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Introduction
The time required for new processes or process 
chains to transition from a successful laboratory 
demonstration to industrial mass production 
has been steadily reduced in the last 30 years. 

While it took considerably more than 10 years for 
a successful transfer of the passivated emitter 
and rear cell (PERC) concept to industrial 
production, solar cell concepts with passivating 
contacts, such as tunnel oxide passivating 
contact (TOPCon), have required less than five 
years between the demonstration of the principal 
potential in the laboratory to mass production 
capability (see Fig. 1). 

As a result of this rapid development and the 
enormous expansion of (PERC-based) production 
capacities in recent years to currently more than 
200GWp worldwide, an accelerated transition of 
many production lines based on PERC technology 
to TOPCon can be expected in the coming 
years. For this changeover to happen, various 
process routes are currently still being evaluated 
with regard to their suitability for the most 
cost-efficient, resource-conserving and mass-
production-capable implementation possible. This 
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Figure 1. Evolution of laboratory and commercial solar cell conversion efficiencies. From PERC laboratory record cells to volume mass production, it 
took about ten years, while for TOPCon this time frame has already shortened to less than five years. (Graph adapted and extended from M. Hermle, 
ETIP PV Conference, Brussels (2017).)
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paper presents the different process options and 
solar cell concepts and evaluates them with respect 
to their technological maturity.

Approach for assessing technological 
maturity
For the purpose of assessing the maturity of 
different PV technologies, Fraunhofer ISE has 
introduced a technology readiness scale for internal 
use that consists of ten different levels (gates) [1]. 
In comparison to earlier definitions by NASA [2] or 
the European Commission [3], Fraunhofer’s scale 
is more quantitative and uses important selected 
parameters, namely area and conversion efficiency 
of the device as well as throughput (i.e. number 
of devices produced per unit time of production). 
Further, the definitions of these levels can be 
integrated into road-mapping in order to obtain 
better future projections. Fig. 2 shows the different 
technology readiness levels (TRL), or gates, used for 
the analysis in this work. 

Principal process �ow and 
upgradability from existing PERC 
production lines 
Currently, the industrial version of the front-
junction TOPCon cells on n-type c-Si, referred to 
as the industrial TOPCon (i-TOPCon) cell [4,5], is 
widely seen as the potential evolutionary upgrade 
to the incumbent p-PERC cells. The i-TOPCon cell 
design envisions a process route that benefits from 
processing similar to that for a PERC cell, thus 
requiring integration of only few additional process 
steps in the cell process chain. The cell architecture 
is reported to yield high efficiencies of greater 

than 24.0% in volume production [6] by leading cell 
manufacturers, with record efficiency claims of up 
to 25.5% on industrial wafers of sizes up to 
210 × 210mm [7–9]. 

Fig. 3 summarizes the typical process steps 
used in creating an i-TOPCon cell. Note that 
the process flow is non-exhaustive and various 
process routes and a wide range of technology 
options for the TOPCon concept are currently 
under consideration by the PV industry in terms 
of both their technological and their economic 
viability. The process flow is largely dictated by 
the choice of the tunnel oxide (TO) formation 
and the amorphous (a-Si) or poly-silicon (poly-
Si) layer deposition technology, and depends on 
whether the a-Si or poly-Si layers are doped in situ 
or require a subsequent external doping process. If 
technologically feasible, two or more process steps 
are combined within a single tool to ensure a lean 
process flow.

As a rule, boron doping is performed using a 
tube diffusion process to form the p+ emitter on 
a textured n-type c-Si substrate. This is followed 
by an inline wet-chemical process for single-sided 
removal of the rear-side emitter. During emitter 
removal, the borosilicate glass (BSG) layer is usually 
kept intact at the front to act as a barrier against 
wet or dry chemicals, which are used later during 
wrap-around removal of the parasitic a-Si or poly-Si 
layer at the front side. Typically, a wet-chemical, UV 
light, plasma or thermal process then forms a thin 
TO layer at the rear surface, followed by deposition 
of the Si layer [10]. In some cases, the TO formation 
and Si layer deposition might be performed in situ 
in one process using a single tool.
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Figure 2. Technology readiness level (TRL) definition (adapted and extended from Baliozian et al. [1]) for assessing technological maturity.



PV technology readiness | Cell Processing

The deposited Si layer itself might be intrinsic 
(nominally undoped) or phosphorus doped in situ. 
Intrinsic layers require a successive doping process 
ex situ, conventionally performed in a POCl3-based 
tube furnace process that simultaneously also 
crystallizes the Si layer to form a fully crystalline 
poly-Si layer. For phosphorus-doped in situ layers, 
crystallization is achieved by a thermal annealing 
step. If single-sided poly-Si deposition is not 
warranted, a wrap-around removal process is 
required to remove unwanted poly-Si residuals on 
the textured front side. The wrap-around removal 
is normally performed using a wet-chemical 
process [10], although a dry alternative was 
reported recently [11]. In both cases, the remaining 
BSG layer on the front side serves as an etch 
barrier and is subsequently removed, typically in a 
wet-chemical process.

The next steps are dielectric surface passivation 
and anti-reflective coating (ARC) of the front 
and rear sides and a hydrogenation stage, which 
aims to improve the passivation property of the 
TOPCon structure. In an industrial scenario, 
the latter is generally performed by depositing 
hydrogen-rich dielectrics, for example an 
amorphous silicon nitride layer (a-SiNx:H) by 

plasma-enhanced chemical vapour deposition 
(PECVD), which act as an efficient hydrogen 
source during the contact-firing step. Front and 
rear metallization is typically achieved by using 
screen-printed Ag-based pastes, followed by a fast-
firing process to form the external contacts. This 
process yields a bifacial cell structure, as shown in 
Fig. 3(e).

Solar cell concepts based on TOPCon 
device features
Besides the ‘standard’ configuration of an industrial 
TOPCon solar cell featuring a diffused front 
junction (FJ) [12], with a TRL classification of 9 in 
Fig. 4, there are other options for implementing 
passivating contacts in a device structure: as the 
rear emitter in a back-junction (BJ) configuration 
[13,14] or as both contacts of an interdigitated back-
contact (IBC) solar cell [15]. Currently, the highest 
conversion efficiencies achieved on a laboratory 
scale using these architectures are 25.8% (TOPCon 
FJ) [13], 26.0% (TOPCon BJ) [13] and 26.1% (IBC) [15].

Among the above-mentioned cell architectures, 
the IBC concept offers the highest potential in 
terms of monofacial conversion efficiency, as both 
contact polarities are located at the rear of the cell. 
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However, it is also the most complex architecture 
for transfer to mass production, because several 
structuring steps are required during fabrication. Up 
to now, only the company SunPower/Maxeon has 
mastered the transition of such an IBC cell structure 
to industrial mass production, also demonstrating 
the highest efficiencies available in the market 
[16]. Known realizations of IBC with passivating 
contacts, such as the POLO IBC cell from ISFH [15], 
have been demonstrated on large-area industrial 
wafers in a laboratory environment, therefore 
having a designated TRL of 4 (Fig. 4). 

Both-side contacted cells, on the other hand, have 
an additional advantage of high bifacial power gain, 
which is especially relevant for large-scale power 
plants. For the BJ cell concept (TOPCoRE), the 
n-TOPCon stack acts as a rear emitter on a p-type Si 
substrate. The main advantage of this configuration 

is that the whole c-Si substrate contributes to the 
charge-carrier transport towards the local front-side 
contacts, which makes a full-area highly conductive 
layer at the front surface obsolete, such as the full-
area B diffusion in the case of the n-TOPCon cell. 
Consequently, the front-surface recombination can be 
significantly reduced. However, a localized p++ region 
is placed under the contact to limit the recombination 
and allow the formation of a low-ohmic contact. Since 
the minority carriers (here electrons) are collected 
at the rear junction, a high diffusion length (i.e. a 
high-quality base material with a diffusion length 
much greater than the cell thickness) is a primary 
requirement for the BJ concept. Additionally, the 
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Figure 3. (a) Typical process flow for an i-TOPCon cell with the potential combination of two processes in a single process step. Schematic cross 
sections of cell precursors after some crucial process steps in typical TOPCon processing: (b) after texturing, boron emitter diffusion and single-sided 
emitter removal; (c) after TOPCon deposition, doping and annealing; (d) after wrap-around removal of poly-Si(n) at the front and the edges; (e) after 
dielectric layer deposition and contact formation.

“The IBC concept offers the highest potential in 
terms of monofacial conversion efficiency.
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Figure 4. Different cell architectures featuring passivating contacts and their classification within the TRL scheme.

omission of a conductive front surface (p+ front-
surface field) has been found to not limit the majority 
transport to the front contacts unless very high 
resistive wafers are being used [13].

The cell architecture yielded conversion 
efficiencies of up to 26% in small-area devices with 
evaporated contacts on a laboratory scale, with a 
clear advantage in fill factor FF (more than 1%abs) 
and open-circuit voltage Voc (8mV) achieved by the 
n-type front-junction TOPCon cell. The transfer 
of this process to mass production is expected to 
encounter challenges in solving light and elevated 
temperature-induced degradation (LeTID), which 
is more critical for industrial standard p-type Cz 
Si than for n-type Cz Si; therefore, the overall TRL 
readiness of the TOPCoRE cell concept is not higher 
than 3 (Fig. 4).  

Silicon layer deposition as the main 
di�erentiator – technical maturity of 
the di�erent approaches 
Typically, amorphous or partly crystalline silicon 
layers are first deposited and then subjected to 
a high-temperature step to form a poly-Si layer. 
Depending upon the deposition technology, the 
doping of poly-Si is performed either during 
the deposition process (in situ doping) or in a 
subsequent process, such as gas phase diffusion or 
ion implantation (ex situ). Importantly, the choice 
of the Si deposition technology dictates almost all 
the other important cell processing steps before 
metallization, especially based on whether the 
technology allows an in situ TO formation, in situ 
doping and a true single-sided deposition. Although 
several deposition methods are under investigation, 

most notable are chemical vapour deposition (CVD) 
and physical vapour deposition (PVD). CVD is 
performed either at low pressure (LPCVD), by means 
of PECVD, or at atmospheric pressure (APCVD), 
all using silane (SiH4) as a silicon precursor and 
optionally phosphine (PH3) or diborane (B2H6) as 
dopant gases. 

LPCVD
Currently, industrial screen-printed TOPCon solar 
cells on n-type substrates are almost all based 
on LPCVD a-Si/poly-Si deposition technology, to 
which a TRL of 9 is assigned (see Fig. 5). LPCVD 
has been used as one of the important established 
processes in semiconductor facilities to deposit 
highly conformal layers of a-Si/poly-Si layers in low-
pressure conditions [17]. The main advantages of this 
technology are:

1. Possibility of in situ TO formation by thermal 
oxidation.

2. Excellent thickness uniformity along the wafer 
and the boat in the case of intrinsic layers.

3. Pin-hole-free layers with good step coverage.
4. Large number of wafers per batch.
5. Option of in situ doping with a constant doping 

profile [18].

The last of the above advantages, however, still 
comes at the expense of reduced layer uniformity 
and deposition rates, and therefore lower 
throughput.

Some of the most promising technologies that are 
close to production readiness apart from LPCVD are 
briefly discussed below. 
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PECVD
PECVD is a well-proven technology in the PV 
industry for depositing dielectric passivation layers, 
and one of the most promising candidates for a-Si 
deposition. In fact, the International Roadmap for 
Photovoltaics (ITRPV) predicts a rapid adoption 
of this technology for a-Si deposition rather than 
LPCVD in the near future [19].

PECVD deposition of a-Si layers offers higher 
deposition rates than with LPCVD technology, 
thus promising greater cost effectiveness. Another 
advantage of using PECVD is the possibility of 
doping a-Si layers in situ; however, it should be 
pointed out that layer homogeneity and deposition 
rates in that case are also impacted. One of the 
challenges is to avoid blistering in thick layers 
(d > 100nm), which are currently still required for 
industrial TOPCon architecture because of the 
potential penetration of the poly-Si layer by the 
metallization.

Although PECVD is loosely considered a single-
sided deposition process, avoiding the wrap-
around of a-Si layers in an industrially feasible 
manner remains a major technological challenge 
for equipment manufacturers. Industrial tools 
allowing depositions in either batches [20] or an 
inline mode [21] are available, and cell integration 
results have also been published in the literature 
[20]. An advantage of the PECVD approach might 
be the option to implement a plasma oxidation 
step for in situ TO formation before the deposition 
of the a-Si layer, enabling a lean combined process 
for TO formation and Si layer deposition, similar to 
the LPCVD approach. To the authors’ knowledge, a 
PECVD deposition process for TOPCon structures 
has not yet been implemented in any cell 
production, which is why a TRL of 4 to 6 is assigned 
to this technology (Fig. 5).

APCVD
Atmospheric pressure chemical vapour deposition 
(APCVD) is another potential technology for 
depositing intrinsic and doped amorphous or 
partly crystalline layers in an inline mode at high 
deposition rates [22]. The process utilizes thermal 
dissociation of silane (SiH4), which is inserted in 
a heated chamber using injector heads. Since the 
chemical reactions occur directly at the heated 
substrate, APCVD is also expected to provide good 
single-sidedness with a small wrap-around similar 
to that for the PECVD process. 

Furthermore, in situ doping is reportedly easily 
achieved by directly inserting doping precursors 
in the SiH4 flow, and cell integration results have 
been demonstrated [23]. Here, the TO layer needs to 
be formed before the APCVD process, for example 
in a wet-chemical process subsequent to the rear 
emitter removal. APCVD of silicon layers appears to 
have not yet been implemented in cell production, 
indicating a similar TRL as PECVD.

PVD
PVD as another industrial applicable production 
method and is capable of depositing high-quality 
a-Si layers using a silicon target, with the major 
benefit of providing true single-sidedness [24]. Both 
the silicon and an appropriate dopant element can 
be deposited using solid, non-toxic targets. Since 

“Currently, industrial screen-printed TOPCon solar 
cells on n-type substrates are almost all based on 
LPCVD a-Si/poly-Si deposition technology, to which 
a TRL of 9 is assigned.”
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“The limited supply of silver and the increasing 
cost of raw materials will be critical factors for an 
increasing PV market heading towards terawatt 
scale within the next decade.”

PVD is a vacuum-based inline process, a plasma 
oxidation for TO formation might be implemented 
in a separate chamber before the deposition.

The company Jolywood, a pioneer in industrial 
TOPCon cell manufacturing, is presumably also 
using PVD in their most recent production lines 
as their primary deposition technique (based on 
a technology called POPAID (plasma oxidation 
and plasma-assisted in situ doping deposition) 
introduced by the equipment manufacturer Jiangsu 
Jietai Optoelectronics Technology Co., Ltd. – JTech) 
[25]. PVD is therefore already in use industrially, 
but not yet as a mainstream technology, which is 
reflected in its TRL level of 8 (Fig. 5). 

Metallization – decisive for cost and 
silver usage reduction 
A key challenge in industrially upscaling the 
TOPCon solar cell concept lies in the metal 
contacting of the solar cells. The metallization on 
the TOPCon side especially has revealed itself to 
be challenging, as the tunnel oxide should not be 
damaged in order to guarantee its full functionality 
as a carrier-selective contact. As a state-of-the-art 
metallization technique for i-TOPCon solar cells, 
screen printing of Ag–Al and Ag is used on the 
front and rear sides, respectively. 

The dominant loss mechanism of an i-TOPCon 
solar cell is associated with recombination induced 
by the metal electrodes on the emitter side and, 
to a reduced degree, on the TOPCon side [26]. 
The contact formation process, which typically 
takes place at peak temperatures in excess of 
700°C, is industrially performed using a fast-firing 
oven (FFO). At those temperatures, the dielectric 
capping layers, mostly amorphous SiNx, covered by 
the screen-printed electrode, are etched by glass 
frit components within the paste. Then, oxygen 
ions on both sides react with the crystalline or 
poly-Si, creating etching pits that facilitate the 
creation of an ohmic contact [27]. On the front, 
the metallization significantly increases carrier 
recombination, while on the rear, the etching pits 
consume the poly-Si, potentially reaching the thin 
oxide layer and consequently de-passivating the 
contact. The contact formation process on both 
sides is fuelled by elevated firing temperatures. 
On the one hand, the higher temperature leads 
to low-ohmic contacts and thus a high fill factor 
FF; however, on the downside, this comes with 
increased metal-induced recombination, mainly 
decreasing Voc and ultimately limiting the 
conversion efficiency potential.

LECO
At Fraunhofer ISE, laser-enhanced contact 
optimization (LECO) [28] as a post-firing 
treatment is applied to reduce the contact firing 
temperature, which enables higher Voc and 
simultaneously higher FF values on i-TOPCon 
solar cells. The LECO process locally applies a very 
intense laser pulse to the solar cell, which is held 
at a constant reverse voltage of 10V or higher. The 
resulting local current flow of several amperes is 
responsible for significantly reducing the contact 
resistivity between the semiconductor and the 
metal electrode [29].

By using a lower firing temperature in 
combination with LECO post treatment, 
an efficiency gain of up to +0.6%abs can be 
demonstrated, compared with the optimum for 
a firing temperature variation [30]. This gain 
originates from decoupling the dependence on 
temperature of Voc and short-circuit current density 
Jsc on the one hand and FF on the other during the 
contact firing procedure. The LECO process enables 
one to benefit from high Voc and Jsc values using 
low firing temperatures, while simultaneously 
achieving high FF values as if the firing had 
taken place at higher temperatures. As a result, a 
reduction in the optimal peak firing temperature 
of 20–40°C is observed. Moreover, metal-induced 
recombination is lowered because of the reduced 
firing temperatures of up to 40°C, mainly on the 
boron emitter side, leading to the observed gains 
in Voc [30]. On both sides of the solar cell, the lower 
temperatures allow thinner and lighter-doped 
layers, and potentially the use of additional or 
thicker dielectric layers, which are more resilient 
to penetration by metal pastes, reduced metal area 
fraction and extended co-firing conditions.

Finally, LECO-treated i-TOPCon solar cells do not 
show any signs of LeTID using accelerated testing 
conditions. Furthermore, the LECO improved state 
does not degrade under these conditions, giving 
significant confidence in enduring, high module 
performance for these kinds of solar cell.

Ni/Cu/Ag contacts
Recent publications point out that the limited 
supply of silver and the increasing cost of raw 
materials will be critical factors for an increasing 
PV market heading towards terawatt scale within 
the next decade [31,32]. Conventional technology 
evolution (as expected according to the ITRPV [19]) 
is not sufficient to overcome these limitations, 
especially in the case of solar cell designs with silver 
contacts on both sides.

Electroplating of Ni/Cu/Ag contacts has been 
found to be a suitable candidate for metallizing 
bifacial TOPCon solar cells [33,34]. Plating is a 
lead-free metallization technique which allows 
narrow contact geometries (<25µm) and low contact 
resistivities (ρc < 1mΩcm2) [35]. Furthermore, with 
the use of mainly Cu as the main conductive 
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component, a significant cost reduction is realizable, 
resulting in a cost of ownership (COO) advantage of 
around 45%, compared with screen printing [35].

The electroplating process developed at 
Fraunhofer ISE is illustrated in Fig. 6. Laser contact 
ablation of the ARC on the front and rear defines 
the grid pattern. After the necessary TOPCon 
activation via a short high-temperature firing 
step, single-side plating processes are applied to 
deposit a stack of a thin nickel seed layer (<0.5µm), 
copper bulk finger (1–10µm) and a thin surface-
finish layer (<0.5µm) of either silver or tin. On 
industrial precursors, this plating approach yielded 
record efficiencies of up to 24.0%, compared with 
23.5% using the suppliers R&D screen-printing 
metallization approach shown in Table 1. 

A further advantage of the process, demonstrated 
in Kluska et al. [36], is the low contact 
recombination of the local contact opening (LCO) 
patterning, even for poly-Si thicknesses of down to 
60nm on the TOPCon rear side. This would enable a 
reduction in the poly-Si thickness, and consequently 
an increase in process throughput, in the TOPCon 
deposition process.

Fig. 7 takes a closer look at the COO for the 
metallization backend for TOPCon solar cells. 
The main cost driver for screen-printed contacts 
is the cost of silver paste and its dependency on 
the volatile raw material price of silver. However, 

the more advanced stage in the learning curve 
for screen-printing-tool manufacturing means 
that equipment costs are fairly low. Since plating 
technology is at the beginning of its learning 
curve in PV, the equipment costs are significantly 
higher than for screen printing, but the costs of 
consumables are much lower. 

Conclusion 
The paper has summarized the current status 
of TOPCon implementation in industrial mass 
manufacturing and is intended to offer guidelines 
for the technology readiness levels of various 
process technologies along the process chain. 
While technology progress is visible in all steps 
of the process chain options, to date LPCVD still 
represents the only viable and industrially fully 
adopted process solution for the Si layer deposition, 
which represents the core process of any new 
TOPCon greenfield installation or upgrade from 
existing PERC. For future growth, technology 
development drivers are not only production-cost 

Cell area 267.85cm2 (full area) η [%] Jsc [mA/cm2] Voc [mV/cm2] FF [%]

Screen printing 23.5 40.7 705 81.9

Plating  24.0 41.0 715 82.0

Table 1. Certified record efficiencies for full-area (M2), nine-busbar, industrial TOPCon solar cells (the poly-Si layers were fabricated by LPCVD) [37].

“While technology progress is visible in all steps 
of the process chain options, to date LPCVD still 
represents the only viable and industrially fully 
adopted process solution for the Si layer deposition.”

Figure 6. Structure and process sequence for the manufacture of a bifacial TOPCon solar cell, based on laser structuring and Ni/Cu/Ag plating.
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Figure 7. Cost of ownership (COO) comparison of a screen-printed-based metallization (120mg total Ag consumption) and the proposed Ni/
Cu/Ag plating approach. Different Ag source material prices (indicated by the horizontal dashed lines) highlight the significant impact on 
metallization cost.

related but also arise from resource-criticality 
aspects. In metallization, therefore, alternative 
approaches for the current mainstream silver usage 
in screen printing will be one of the major topics for 
development in the near future. 
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