

WEBINAR

2 SEPTEMBER 2021

The importance of product reliability and system value of a 600W+ module in achieving the lowest LCOE

Franck Zhang Head of Global Product Strategy and Marketing Trina Solar

Gao Lei Senior Manager, Global Module Product Management Trina Solar

Fraunhofer

Dilara Maria Subasi Research Engineer, Techno-economic and Ecological Analysis **Fraunhofer ISE**

Moderated by

Jefferson Bor Project Manager, Modules and Power Plants Analysis Fraunhofer ISE

Liam Stoker Editor in Chief Solar Media

Vertex

The 600W+ solar module market, ecology system construction and industrialization

Dr. Franck Zhang Head of Global Product Strategy and Marketing 2 Sep, 2021

OPVTECH TECHTalk Trinasolar

OUTLINES

- Progress of 600W⁺ ecology system construction
 - 2. 210 modules predicted to become mainstream
 - 3. Global product capacity of Trina Solar in 2021

2009-2021 PV module mass production power trend Trinasolar

- 600W⁺ Vertex module was launched in June 2020;
- 670W Vertex module was launched in Mar, 2021.

Trina Solar family of high-efficiency Vertex modules

Trinasolar

ertex

- Vertex series can be applied to various scenarios, such as residential, industrial & commercial rooftops, agriculture, fishery, water, petrol stations, carparks and large utilities.
- Compared to competitors, 210 modules achieve a power increase of 35-90W, delivering more value to customers, saving 0.5~1.6 c USD/W in BOS costs.

210 Vertex modules compatible with inverters from leading manufacturers across multiple scenarios

17th Mar, Huawei launched the inverts compatible with the large-sized-wafer modules.

210 Vertex modules compatible with inverters from leading manufacturers across multiple scenarios invertertool.trinasolar.com

210 Vertex Module Inverter Matching Tool

Trinasolar						CN 中文
天合光能					Tool Version:1.1 Data Version:20	2108 Reference ambient temperature : -10°C
Module Power 670 Maximum System Voltag	• Appl	ication Scenarios Please Select	• Inverter Brand	Please Select	Inverter Model Please enter mo	del
Brand 🜩	Scenario 🜲	Model 🗢	MPPT channel	MPPT current	MaxVoltage 🜲	Module pow 4 AC output voltage
华为(HUAWEI)	电站(Utili	SUN2000-315KTL-H0	8/32	60A*8	1500∨	670
华为(HUAWEI)	电站(Utili	SUN2000-196KTL-H3	3/14	100A*3	1500∨	670
阳光电源(SUNGROW)	电站(Utili	SG320HX (40A*12)	12/24	40A*12	1500∨	670
上能(SINENG)	电站(Utili	SP-320K-H	12/32	45A*12	1500V	670
上能(SINENG)	电站(Utili	SP-250K-H	12/24	40A*12	1500V	670
固德威(GOODWE)	电站(Utili	GW225KN-HT	6/18	60A*6	1500V	670
锦浪(GINLONG)	电站(Utili	G6-GU320K-EHV	12/24	45A*12	1500∨	670
锦浪(GINLONG)	电站(Utili	GCI-230K-EHV-5G	14/28	26A*14	1500V	670
科华(KELONG)	电站(Utili	SPI350K-B-H	12/24	40A*12	1500V	670

Trina Solar has released a white paper on inverter matching, containing a comprehensive inverter matching database and the world's first quick matching tool.

210 Vertex modules compatible with solutions from top tracker manufacturers

Soltec

Trina Tracker

TrinaTracker (Vanguard[™]/Agile[™])

SF7 & SF8

GENIUS TRACKER™ 1P/ GENIUS TRACKER™ 2P

H4^{PLUS} ™

210 Vertex module milestones 2021.5.26

Trinasolar

Standardization of 210 module dimensions & mounting

oles		Milestones												
Companies	L1	K1	A1	A2	C1	C2	T1	R	G1	STP	ZT	TH	HQ	
156 @ 380	2.004	1.987	2.0	000	2.0	000	2.000		1.986	1.988			1.994	
158 @ 400	2.020	2.008	2.0)31	2.1	32	2.024	2.015	2.010	2.016	2.018	2.015	2.080	
166 @ 450	2.115		2.1	04	2.1	08	2.100	2.108	2.116		2.108	2.092		
182 @ 540	2.256	2.274	2.279	2.285	2.261	2.266					2.279	2.471		
210 @ 550							84							
210 @ 600														
210 @ 670														

- Downstream: Unified module size and mounting holes benefit tracker selection and installation standardization; this ensures the convenience of supply and use of module.
- > **Upstream**: Unified size can reduce inventory, improve production efficiency, and greatly reduce related costs.

Standardization of 210 module dimensions & mounting holes Trinasolar

600W 210-60pcs

670W 210-66pcs

Key dimension:	Module type	Cell amount	Module length [mm]	Module width [mm]	Cell amount	Module length [mm]	Module width [mm]
Shape	Backsheet	120			132		
dimension	Dual glass	120			132		
Mounting hole	Module type	Cell amount	Long side mounting distance [mm]	Short side mounting distance [mm]	Cell amount	Long side mounting distance [mm]	Short side mounting distance [mm]
location	Backsheet	120			132		
	Dual glass	120			132		
Mounting	mounting hole gap	W[mm]	L[mm]	R[mm]	W[mm]	L[mm]	R[mm]
hole dimension	1400	9	14	4.5	9	14	4.5
	400	7	10	3.5	7	10	3.5

2021 SNEC **@57% of companies exhibited 210 modules**

• 57% (21/37) of companies exhibited 210 Modules with module power 600-700W;

35% companies presented 182 Modules with power: 550-570W;

Trinasolar

2021.1-6 Cumulative bidding projects of Chinese companies high power modules account for 83%

2021.1~6 Domestic cumulative

Company	Bidding scale (MW)
中核 CNNC	7610
华电 CHD	7000
大唐 DaTang	5000
广州发展 Guangzhou Development	1080
广东省能源集团 GEG	950
中广核 CGN	700
龙源电力 LongYuan	350
南网能源 Southern Power Grid	280
通威 TongWei	200
承德大元新能源 Chengde Dayuan new energy	180
黄河水电 Yellow River Hydropower	126
三峡 Three Gorges Corporation	124
协和新能源 Concord New Energy	100
湖北能源集团 Hubei Energy Group	100
粤水电 Guangdong hydropower	50
蒙能集团 Mengneng group	49
中国能建 CEEC	5
Sum	24000

Trinasolar

Data source: Solarbe (2021.7.15)

210 Vertex modules: over 18GW of signed orders

Trinasolar

210 to become mainstream

数据来源: PV InfoLink 2021.7

- According to the latest report published by PVinfolink, the 210 modules production capacity will reach 147GW this year and 234GW next year(Cell capacity @ 306GW).
- High power modules will take more than 70% share of overall global modules production capacity. And the pace of growth is likely to exceed our forecasts.

210 Vertex module & cell capacity

Trinasolar

2021 Module Capacity

2021 Cell Capacity

SuQian

YanChe

ChangZhou

Overseas

YiWu

Summary

1

210 Vertex module **ecosystem** has been **established** with compatibility with inverters, trackers & BoS.

210 modules to become mainstream. Global 210 cell and module capacity forecast to reach **234-306GW** in 2022;

3

Trina Solar's global product capacity for 2021 is 50GW⁺, of which around 70% is taken up by 210 Vertex modules. 210 modules provide 35-90W power increase, delivering greater customer value.

THANKS!

- Deploying Vertex,
- Maximize Your ROI.

ANALYZING IMPACT OF MODULES WITH DIFFERENT WAFER SIZES ON THE LCOE

LCOE Study for 6 Module Types and 2 Locations

Jefferson Bor, Dilara Maria Subasi

Fraunhofer Institute for Solar Energy Systems ISE "Special thanks to Trina Solar"

PV Tech Webinar 02.09.2021

www.ise.fraunhofer.de

LCOE Study for Solar Modules with Different Cell Sizes Background

3 Cell Sizes

166mm (M6) → 182mm (M10) → 210mm (G12)

6 Module Designs

 $\mathsf{M6-455W} \xrightarrow{} \mathsf{M10-540W} \xrightarrow{} \mathsf{G12-550W} \xrightarrow{} \mathsf{M10-590W} \xrightarrow{} \mathsf{G12-605W} \xrightarrow{} \mathsf{G12-665W}$

(-5W for Bifacial system)

LCOE Study for Solar Modules with Different Cell Sizes Background

2 Locations

Germany	1087 kWh/m²	Temperate climate ; high <u>diffuse</u> irradiation
Spain	1796 kWh/m²	Mediterranean climate ; high direct irradiation and temperature

3 Mounting Systems

10 MWp

Fixed in Germany

50 MWp 50 MWp 1P Tracker in Spain 2P Tracker in Spain

LCOE Study for Solar Modules with Different Cell Sizes Background

2 Locations

Germany	1087 kWh/m²	Temperate climate ; high <u>diffuse</u> irradiation
Spain	1796 kWh/m²	Mediterranean climate ; high direct irradiation and temperature

3 Mounting Systems

10 MWp

Fixed in Germany

50 MWp 1P Tracker in Spain

50 MWp

LCOE Study for Solar Modules with Different Cell Sizes Background – PV Systems in Germany

Module Power [W]	455	540	550	590	605	665
Cell Type	M6	M10	G12	M10	G12	G12
Module Size [mm]	2102 x 1040	2256 x 1133	2384 x 1096	2411 x 1134	2172 x 1303	2384 x 1303
Inverter		SUN2000)-215KTL-H0	/ SUN2000-22	15KTL-H3	
Modules/String	28	28	37	26	34	31
Strings/Inverter	19	16	12	16	12	12
String power [W]	12.74	15.12	20.35	15.34	20.57	20.62
DC/AC Ratio	1.14	1.13	1.15	1.14	1.15	1.15
Pitch [m]	6.03	6.56	6.35	6.56	7.53	7.53
Tilt [°]			2	0°		
Shading angle[°]			3	5°		
GCR			54	.8%		
DC Capacity [kW]	9,924	9,919	10,012	10,063	10,120	10,143
AC Capacity [kW]			8,8	315		
Module numbers	21,812	18,368	18,204	17,056	16,728	15,252
Inverter numbers			4	1		

Monofacial system + String inverter + Fixed

Landscape installation

- G12 module
 - Low voltage
 - High current
 - ightarrow More modules / string
 - \rightarrow Higher current (power) per string
- SUN2000-215KTL-H3 for G12 modules with high current in string
- Dense installation due to high land cost
 - 35° instead of optimizing 14°
- Other control factors same or mostly similar, i.e. GCR, DC/AC, Inverter numbers...

LCOE Study for Solar Modules with Different Cell Sizes Background - PV Systems in Spain

Module Power [W]	450	535	545	585	600	660
Cell Type	M6	M10	G12	M10	G12	G12
Module Size [mm]	2111 x 1046	2256 x 1133	2384 x 1096	2411 x 1134	2172 x 1303	2384 x 1303
Inverter			SG312	5HV-20		
Modules/String	28	29	38	26	34	31
Strings/Inverter	330	268	201	273	204	203
String power [W]	12.60	15.52	20.71	15.21	20.40	20.46
DC/AC Ratio	1.16	1.16	1.16	1.16	1.16	1.16
Pitch [m]	5.28	5.64	5.96	6.03	5.43	5.96
Strings/Tracker	4	4	3	4	3	3
Tracker number	990	804	804	819	816	812
GCR			4()%		
DC Capacity [kW]	49,896	49,896	49,953	49,828	49,939	49,841
AC Capacity [kW]			43,	116		
Module numbers	110,880	93,264	91,656	85,176	83,232	75,516
Inverter numbers			1	.2		

- Bifacial system + Central inverter + 1P Tracking
 Portrait installation
- Strings on tracker are determined by the max. tracker length
 - → Less strings/tracker for high current G12 module
- Looser installation
 - GCR 40%
- Others same concept as Germany

Energy Yield and Performance Ratio PV Systems in Germany and Spain

- Yield and PR differences only in a small range*
- M6.455W/450W slight worse due to cell technology

→ Must take a closer look at LCOE

© Fraunhofer ISE FHG-SK: ISE-INTERNAL *for the G12 systems in Spain, 6mm² instead of 4mm² DC cable for connecting strings and combiner boxes are simulated in the study . For the rest of systems and all cases in Germany, 4mm² DC cable is simulated.

Levelized Cost of Electricity (LCOE) **Calculation Formula**

Т	lifetime	ResValue	residual value of the PV system after its lifetime
Ν	economic lifetime of the system	Yield	electricity produced
CAPEX _{PV, total}	investment	Degradation	degradation rate
OPEX(t)	annual operation expenditure in year t	Availability	percentage of the power plant's operation
WACC _{nom} ,	nominal weighted average cost		

FHG-SK: ISE-INTERNAL

Levelized Cost of Electricity (LCOE) Calculation Formula

Same for all systems (at same location)

 \rightarrow In this study, CAPEX is the dominating parameter for LCOE

CAPEX & LCOE Results CAPEX - PV System in Germany

- Module € / Wp and Inverter € / Wac same for all
- Major differences:
 - Module transport
 - Mounting structure
 - Electrical system
 - Civil works
- Miscellaneous, soft BOS cost same for all

CAPEX & LCOE Results CAPEX - PV System in Germany

		€ct/Wp					
	M6.455	M10.540	G12.550	M10.590	G12.605	G12.665	
Module	26.07	25.78	25.72	26.30	25.75	25.43	
Inverter	3.11	3.11	3.08	3.07	3.05	3.04	
Civil Works	2.30	2.25	2.17	2.22	2.19	2.19	
Electrical system	4.23	3.78	3.64	3.62	3.45	3.33	
Mounting	8.60	7.75	7.59	7.64	6.65	6.64	
САРЕХ	49.61	47.97	47.51	48.14	46.40	45.93	
Land	0.17	0.17	0.17	0.16	0.17	0.17	
OPEX	0.99	0.96	0.95	0.96	0.93	0.92	
			€ct/	kWh			
LCOE	5.08	4.89	4.86	4.91	4.75	4.69	
LCOE comparison	-	-3.7%	-4.4%	-3.4%	-6.6%	-7.6%	

CAPEX difference % compared with M6.455

*miscellaneous and soft BOS cost are not shown in the table

Mounting Structure

Cost difference % compared with M6.455

G12 modules

- Longer string and longer table
- Less amount of table \rightarrow

Landscape G12 + wider modules (G12.605, 665)

- Length instead of width dominates the table cost
- Higher Wp / m
- → Significantly lower \in / Wp

PVTECH TECHTalk

Electrical System

Cost difference % compared with M6.455

Includes module, inverter installation in the study

PVTECH TECHTalk

G12 modules

- Strong reduction of DC cable use
- Reduction of AC cable depends on module geometry
- → DC+AC € / Wp lower compared to M10

Trinasolar Fraunhofer

Cost difference % compared with M6.455

Electrical System

High power modules

Lower module installation € / Wp

G12 + high power modules

- Lower cable cost
- Lower module installation € / Wp
- → Lowest € / Wp

PVTECH TECHTalk

CAPEX & LCOE Results

CAPEX - PV System in Spain: 1-row Tracking

- Module € / Wp and Inverter € / Wac same for all
- Major differences:
 - Module transport
 - Tracker
 - Electrical system
 - Civil works
- Miscellaneous, soft BOS cost same for all

CAPEX & LCOE Results CAPEX - PV System in Spain: 1-row Tracking

	€ct/Wp					
	M6.450	M10.535	G12.545	M10.585	G12.600	G12.660
Module	25.87	26.12	26.05	26.64	26.14	25.76
Inverter	3.03	3.03	3.03	3.03	3.03	3.03
Civil Works	2.13	2.09	2.08	2.04	2.05	2.06
Electrical system	2.54	2.13	1.97	2.04	1.87	1.81
Tracker & Mounting	12.38	10.75	10.44	10.63	10.79	10.51
САРЕХ	51.10	49.26	48.71	49.52	49.02	48.31
Land	0.16	0.15	0.15	0.15	0.15	0.15
OPEX	1.02	0.99	0.97	0.99	0.98	0.97
			€ct/	kWh		
LCOE	2.82	2.70	2.67	2.72	2.68	2.65
LCOE comparison		-4.2%	-5.3%	-3.6%	-4.7%	-6.1%

CAPEX difference % compared with M6.450

*miscellaneous and soft BOS cost are not shown in the table

18

CAPEX & LCOE Results PV System Located in Spain: 1-row Tracking

CAPEX & LCOE Results PV System Located in Spain: 1-row Tracking

Tracker (Mounting) Structure

Cost difference % compared with M6.455

- Different from table, tracker length is quite fixed
- → Similar amount of tracker for M10, G12 systems
- Module geometry may have more impact than M10 or G12
- G12.545, <u>M10.585</u>, G12.660 lower € / Wp
- → for the same width(1.3m), G12.600 has higher € /m than G12.660

CAPEX & LCOE Results PV System Located in Spain: 1-row Tracking

Electrical System

Cost difference % compared with M6.455

- Similar to results in Germany, but without AC cabling due to central inverter
- \rightarrow G12 higher DC cable reduction dominates the cost reduction

Trinasolar 🛛 🖉 Fraunhofer

CAPEX & LCOE Results

LCOE - PV System in Germany and in Spain (1P)

For systems with similar yield and PR, we learn that:

- G12 systems show the best LCOE at both locations
- Compared to M6, M10 and G12 modules have lower BOS due to their <u>higher power output</u>
- G12 has additional benefits on BOS costs (mounting, cabling, combiner boxes, MC4...) due to its <u>low-voltage</u> → less strings <u>needed</u>
- Module geometry has different impacts on the mounting structure cost depending on types and installation methods, i.e. fixed table or tracker structure ; landscape or portrait

Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Jefferson Bor, Dilara Maria Subasi

www.ise.fraunhofer.de

jefferson.bor@ise.fraunhofer.de

dilara.subasi@ise.fraunhofer.de

© Fraunhofer ISE FHG-SK: ISE-INTERNAL

24

Enhanced Reliability – 670W Vertex Module

ertex

Harsh Environment VS Module Durability

The Diverse Scenarios of Photovoltaic Applications

• Extreme weather conditions such as strong winds, heavy snow, and hail present serious challenges for all PV module manufacturers, in mechanical performance terms.

Trina Solar Vertex Family

Trina Solar – Pioneering Ultra-high Power Modules

- Vertex modules are available from 410 to 670W+ in power, covering all applications
- In various applications, Vertex output is 35W to 90W higher than the industry average, BOS savings in range of 0.5~1.6
 c USD/W

- High reliability ensures extended power generation
- All tests conducted by independent 3rd parties
- All test samples are randomly picked from mass production (DEG21C.20)
- Mechanical load and warranty should comply with latest official Trina Solar User Manual and Trina Solar Warranty

Static Load Equivalent Level to Traditional Modules

IEC 61215 IEC 61730 Granted in 2021

670W Module reliability simulations evaluating wind and snow resistance.

Static load +2400Pa/-2400Pa

Tracker

Vertex non-destructive cutting cell

Conventional cutting cell

Conventional module structure

670W Vertex module structure

a=37°

Non-uniform Snow Load Tests

2.8M Snow Load Endurance

The modules are installed at an incline the test stress is applied at the bottom and gradually increased.

7000Pa, 2.8 m of snow

Post testing, power degradation is only 0.56%.

*Test modules: 210-670 bifacial and dual-glass modules, clamping installation

Static Load Test Under -40°C Enhanced Mechanical Load Characteristics

2

Mechanical load test under (-40°C): Working in extreme low-temperature environments is one of the critical situations, which can result in reduced mechanical performance/damage.

Power degradation after test

EL Image

Before tests	
After tests	

Dependable in extreme low-temperatures

*Vertex 670 single and dual glass modules with cross-beam screw installation: static load criteria +5400Pa/-2400Pa

35mm

25mm

< 3%

Dual glass — hail test

passed

0.17%

IEC standard		Trina test results			
Hail size	Power degradation	Hail size	Power degradation	Tests	
25mm	< 3%	35mm	0.53%	passoa	

Enhanced Dynamic Load Test ±1000PA @20000 Cycles Passed

During their lifecycle, modules endure long-term dynamic stresses on their upper and back sides. The frame, cells

and BoS are subjected to fatigue stress which can be simulated by dynamic load testing.

IEC62782: DML±1000Pa: positive and negative cycles 3~7 time/min, 5.6h/1000times

Test results: after 1000Pa dynamic load in 20,000 cycles, - power degradation was only 0.1%.

Single glass module

4 times standard Dual glass module 20 times (clamping

times (clamping) strength than standard

Wind Tunnel Test 62m/s Extreme Wind Performance

Wind tunnel test: One of the best methods to verify mechanical stability. Wind loads applied from 30m/s to 62m/s, each lasting 30 second. Once target wind speed is achieved and stabilized, test is maintained for 900 seconds.

Wind	Defense					Vertex 53m/s wind test:			
speed	modules(530W)	modules(670W)	Trina Vortex		30° tilt	45° tilt			
(11/5)				Screw	Pass	Pass			
30.53	Slight vibration.	Slight vibration.		Hybrid	Pass	Pass			
45.80		The surface of the							
59.54	Mounting failed with module under test blown away	module distorts in the middle; severe vibration	Reference Module is damaged						
62.60	/	Under highest wind speed the module experiences damage		EL Before	e EL Af	ter			

Robustness of Vertex module outperforms reference module

Installation Tips

The Installation Method Strongly Impacts System Stability.

210 Vertex modules: over 18GW of signed orders

SUMMARY

The Vertex 670W module achieves outstanding mechanical load performance.

2

Verified in enhanced tests for extreme weather conditions such as strong wind, heavy snow, extreme cold and hail.

The installation method strongly impacts system stability. Hybrid fixation is recommended for extreme weather conditions.

THANKS!

