

#### 21 APRIL 2021

### Large-format Modules (LFM) and Solar Trackers: Key Considerations and Impact on Plant LCOE

Leader

**RES-Group** 

#### PRESENTED BY



Mario Riello Vice President EMEA Sales Nextracker

Fabian Kuhn

Senior Project Manager Fichtner GmbH & Co



**Dr. Martin Stickel** Executive Director **Fichtner GmbH & Co** 

**Tomaso Charlemont** 

**Global Solar Procurement** 

#### **MODERATED BY**



Mark Osborne Senior News Editor PV Tech



### **CS** FICHTNER



Large Modules from three different approaches



Large Wafer Modules: considerations from the developer side Tomaso Charlemont, Global Solar Procurement Leader

April 21, 2021















#### **RES Overview**

Large Wafer Modules: considerations from the developer side:

- An unprecedented revolution
- Plenty of interesting features
- Every medal has a reverse side


#### Conclusion













#### RES Overview

**1981:** RES (Renewable Energy Systems) established, performing research in wind technology.

**1992:** RES develops and constructs UK's second utility scale wind farm in Cornwall.

**2001:** Creates the world's largest wind farm at the time, the 278MW King Mountain Wind Project in Texas, USA.

**2010:** First 5MWp Solar Project developed, constructed and operated by RES in France.





**2013:** 345km 300MW 230kV Montana -Alberta, US - Canada transmission line completed.

**2014:** First 4MW (2.6MWh) energy storage project becomes operational in Ohio, US.

**2018:** Understanding the unique needs of corporate clients, RES secured over 1.5GW of power purchase agreements (Corporate PPAs).

**2020:** America's largest bifacial solar project, 216MWp/160MWac begins commercial operations in Georgia, USA.



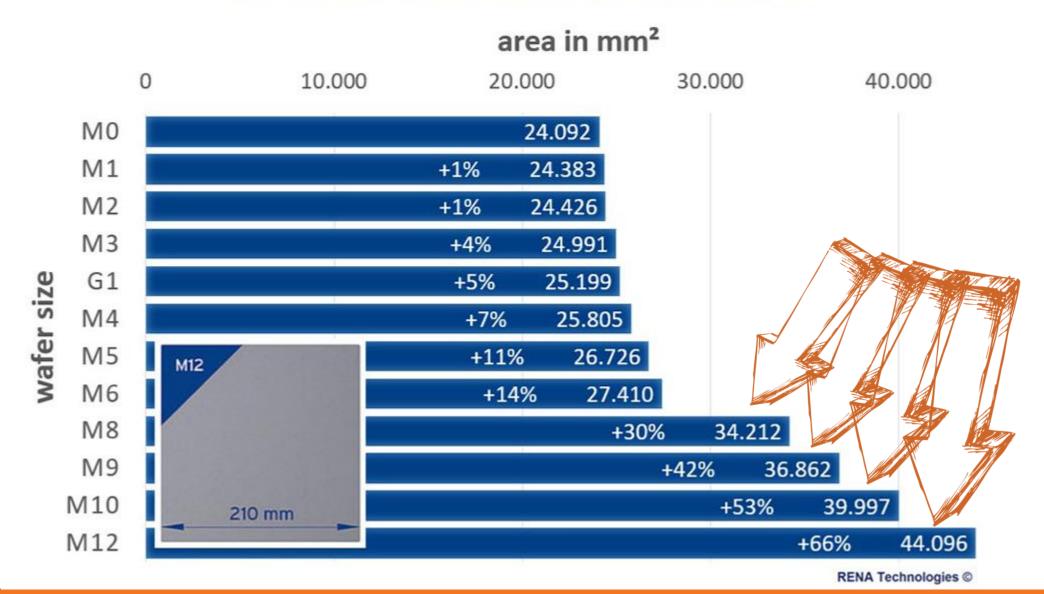
#### **An Unprecedented Revolution**







#### An Unprecedented Revolution

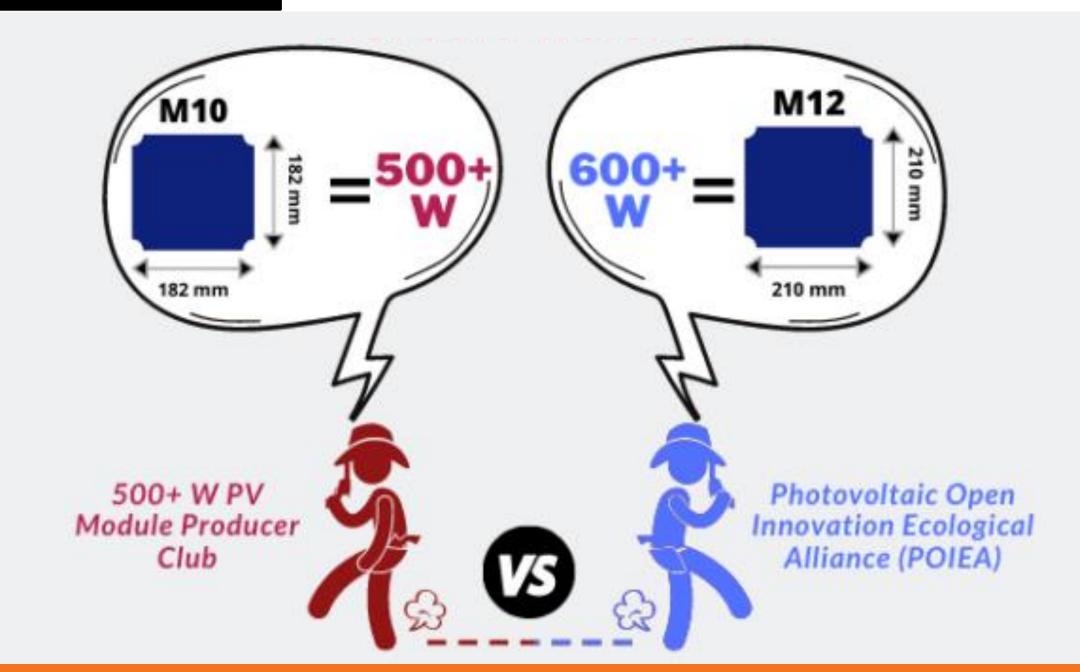









#### **EFFECTIVE WAFER SIZE DEVELOPMENT**




6



#### **An Unprecedented Revolution**









#### 2GWp+ Ground-Mount Project Portfolio to date

| Country | State           | MWp | Tracker | Module  | Project type   | Status | COD   |
|---------|-----------------|-----|---------|---------|----------------|--------|-------|
| USA     | lowa            | 128 | 2 MIP   | G1      | RES EPC        | Constr | 20-Q4 |
| USA     | Texas           | 319 | 1 MIP   | G1      | RES EPC        | Constr | 21-Q3 |
| USA     | Ohio            | 202 | 1 MIP   | G1      | RES EPC        | Constr | 21-Q4 |
| FRA     | N. Aquitaine    | 10  | 1 MIP   | M10     | RES DEV+EPC    | Constr | 22-Q1 |
| USA     | Texas           | 132 | 1 MIP   | G1      | RES EPC        | Award  | 22-Q2 |
| USA     | Ohio            | 200 | 1 MIP   | M10     | RES EPC        | Award  | 22-Q3 |
| USA     | Texas           | 170 | 1 MIP   | M10     | RES EPC        | Award  | 22-Q3 |
| USA     | Arkansas        | 135 | 1 MIP   | M10     | RES DEV+EPC    | Constr | 22-Q4 |
| USA     | Missouri        | 135 | 1 MIP   | M10     | RES DEV+EPC    | Constr | 22-Q4 |
| CAN     | Alberta         | 115 | 1 MIP   | M10     | <b>RES DEV</b> | Devel  | 22-Q4 |
| AUS     | New South Wales | 245 | 1 MIP   | M10     | RES DEV        | Devel  | 22-Q4 |
| AUS     | South Australia | 187 | 1 MIP   | M10/M12 | RES DEV        | Devel  | 23-Q1 |
| TUR     | various         | 78  | 1 MIP   | M10/M12 | RES DEV        | Devel  | 25-Q1 |





#### 2GWp+ Ground-Mount Project Portfolio to date - 70% already with LFM

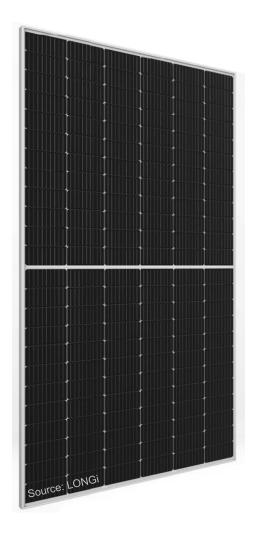
| Country | State           | MWp | Tracker | Module  | Project type | Status | COD   |
|---------|-----------------|-----|---------|---------|--------------|--------|-------|
| USA     | lowa            | 128 | 2 MIP   | G1      | RES EPC      | Constr | 20-Q4 |
| USA     | Texas           | 319 | 1 MIP   | G1      | RES EPC      | Constr | 21-Q3 |
| USA     | Ohio            | 202 | 1 MIP   | G1      | RES EPC      | Constr | 21-Q4 |
| FRA     | N. Aquitaine    | 10  | 1 MIP   | M10     | RES DEV+EPC  | Constr | 22-Q1 |
| USA     | Texas           | 132 | 1 MIP   | G1      | RES EPC      | Award  | 22-Q2 |
| USA     | Ohio            | 200 | 1 MIP   | M10     | RES EPC      | Award  | 22-Q3 |
| USA     | Texas           | 170 | 1 MIP   | M10     | RES EPC      | Award  | 22-Q3 |
| USA     | Arkansas        | 135 | 1 MIP   | M10     | RES DEV+EPC  | Constr | 22-Q4 |
| USA     | Missouri        | 135 | 1 MIP   | M10     | RES DEV+EPC  | Constr | 22-Q4 |
| CAN     | Alberta         | 115 | 1 MIP   | M10     | RES DEV      | Devel  | 22-Q4 |
| AUS     | New South Wales | 245 | 1 MIP   | M10     | RES DEV      | Devel  | 22-Q4 |
| AUS     | South Australia | 187 | 1 MIP   | M10/M12 | RES DEV      | Devel  | 23-Q1 |
| TUR     | various         | 78  | 1 MIP   | M10/M12 | RES DEV      | Devel  | 25-Q1 |







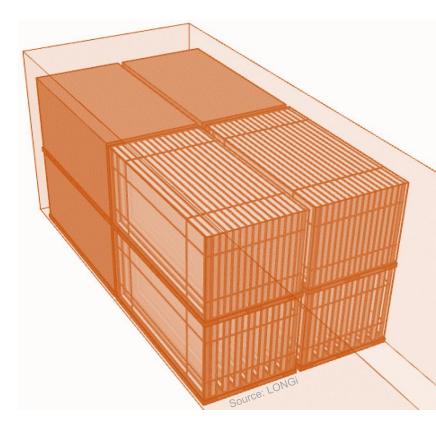



 ✓ Larger Wafers reduce production cost per Wp (more watts produced in the same time).








- ✓ Larger Wafers reduce production cost per Wp (more watts produced in the same time).
- ✓ Module efficiency (W/sqm) increases using larger wafers.







- Larger Wafers reduce production cost per Wp (more watts produced in the same time)
- ✓ Module efficiency (W/sqm) increases using larger wafers.
- Larger modules allow optimization of container loading, reducing freight cost incurred per Wp.







- ✓ Larger Wafers reduce production cost per Wp (more watts produced in the same time).
- ✓ Module efficiency (W/sqm) increases using larger wafers.
- Larger modules allow optimization of container loading, reducing freight cost incurred per Wp.
- Larger modules with higher wattage reduce the number of modules per MW required
  - fewer modules to install reduce labor cost.
  - fewer modules = fewer cable connections, reduce cost and risk.

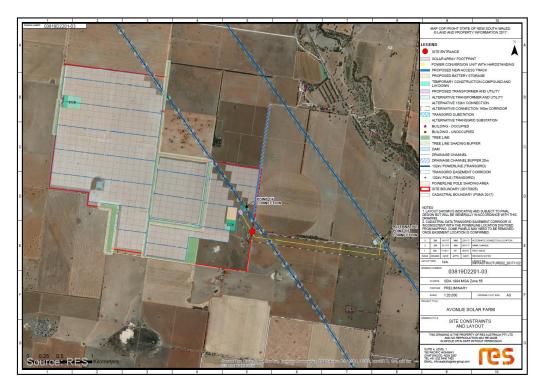






- ✓ Larger Wafers reduce production cost per Wp (more watts produced in the same time).
- ✓ Module efficiency (W/sqm) increases using larger wafers.
- Larger modules allow optimization of container loading, reducing freight cost incurred per Wp.
- Larger modules with higher wattage reduce the number of modules per MW required
  - fewer modules to install reduce labor cost.
  - fewer modules = fewer cable connections, reduce cost and risk.
- Multiple PV manufacturers collaborate for an industry standard for PV modules.

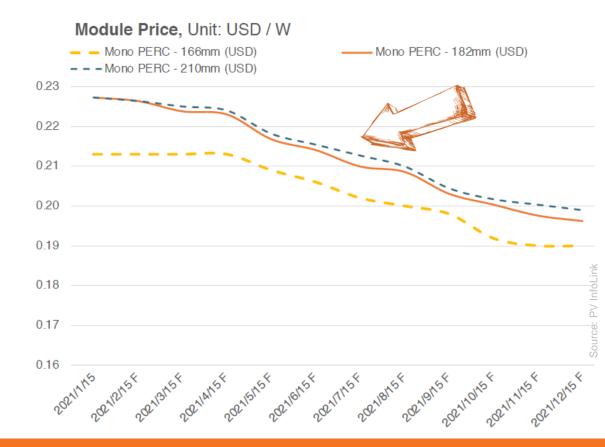








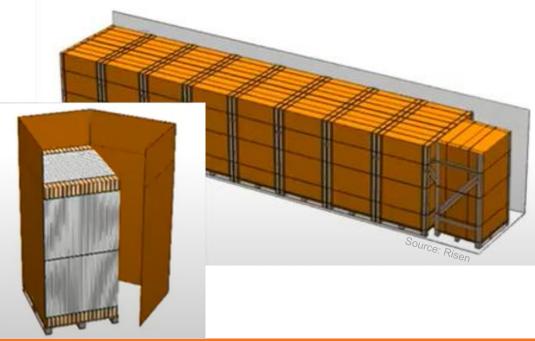




 Projects under development are impacted with redesign and reengineering as modules originally spec'd are being phased out.








- Projects under development are impacted with redesign and reengineering as modules originally spec'd are being phased out.
- ✓ Although larger modules cost less to produce, manufacturers sell them at a premium recovering part of the LCOE reduction.





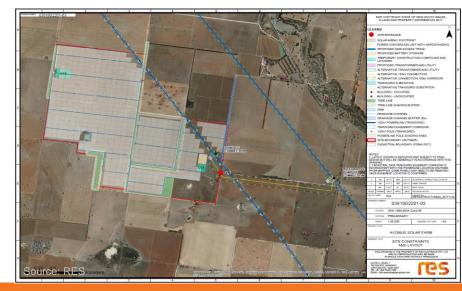


- Projects under development are impacted with redesign and reengineering as modules originally spec'd are being phased out.
- ✓ Although larger modules cost less to produce, manufacturers sell them at a premium recovering part of the LCOE reduction.
- To optimize container loading, some larger modules require unusual packaging: the impact on handling is yet to be evaluated.





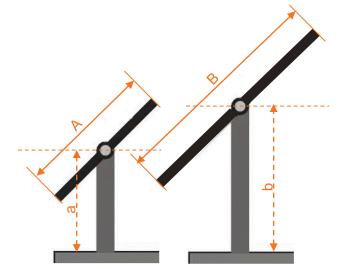



- Projects under development are impacted with redesign and reengineering as modules originally spec'd are being phased out.
- ✓ Although larger modules cost less to produce, manufacturers sell them at a premium recovering part of the LCOE reduction.
- ✓ To optimize container loading, some larger modules require unusual packaging: the impact on handling is yet to be evaluated.
- ✓ Larger modules are up to 40% heavier; the installation cost per module may increase but by how much?








- Projects under development are impacted with redesign and reengineering as modules originally spec'd are being phased out.
- ✓ Although larger modules cost less to produce, manufacturers sell them at a premium recovering part of the LCOE reduction.
- ✓ To optimize container loading, some larger modules require unusual packaging: the impact on handling is yet to be evaluated.
- ✓ Larger modules are up to 40% heavier; the installation cost per module may increase but by how much?
- ✓ Different voltages/currents allow more modules per string:
  - $\circ$   $\,$  this impacts the design of support structures / trackers
  - $\circ$   $\,$  conventional electrical layout is no longer applicable  $\,$
  - o inverters require new DC protection fuse ratings
  - cable harnesses with over-molded fuses may face limits







 ✓ Larger (longer) modules imply an increase of tracker's nominal height requiring resizing of piles and other components.







- $\checkmark$  Larger (longer) modules imply an increase of tracker's nominal height requiring resizing of piles and other components.
- $\checkmark$  The arrival of LFM on the market can cause long lead times and waiting lists at 3<sup>rd</sup> party test labs.

| Reports                       | Number of Reports | Typical Contents                                      | Tentative Timeline<br>(from NTP date) |
|-------------------------------|-------------------|-------------------------------------------------------|---------------------------------------|
| Witness Report                | One               | Detailed BOM listing, brief<br>production overview    | ~1 month<br>from witness date         |
| Intake Report                 | One               | Incoming inspection,<br>initial flash and EL results  | 1 ~ 2 months                          |
| LID Report                    | One               | Light soak to stabilization<br>results on 17 modules  | 2 ~ 4 months                          |
| PAN File and<br>Report        | One               | PAN measurement results with<br>accompanying PAN file | 3 ~ 4 months*                         |
| IAM Report                    | One               | IAM measurement results                               | 3 ~ 4 months*                         |
| Interim<br>Reliability Report | One               | At least: TC200; DH1000;<br>SML+DML; PID96; LeTID162  | 3 ~ 4 months                          |
| Final<br>Reliability Report   | One               | TC600; DH2000; Full MSS<br>PID192; Full LeTID;        | 6 ~ 7 months                          |
| Interim FE<br>Report          | One               | 6-month capacity test;<br>interim characterizations   | 7 ~ 8 months                          |
| Final<br>FE Report            | One               | 12-month capacity test;<br>final characterizations    | 14 ~ 15 months                        |

Source: PVE





- ✓ Larger (longer) modules imply an increase of tracker's nominal height requiring resizing of piles and other components.
- ✓ The arrival of LFM on the market can cause long lead times and waiting lists at 3<sup>rd</sup> party test labs.
- ✓ Some products are made available long before production lines are even up and running.







- ✓ Larger (longer) modules imply an increase of tracker's nominal height requiring resizing of piles and other components.
- ✓ The arrival of LFM on the market can cause long lead times and waiting lists at 3<sup>rd</sup> party test labs.
- Some products are made available for before production lines are even up and running.
- ✓ Many EPCs still lack solid experience building projects with large format modules.







- ✓ Larger (longer) modules imply an increase of tracker's nominal height requiring resizing of piles and other components.
- ✓ The arrival of LFM on the market can cause long lead times and waiting lists at 3<sup>rd</sup> party test labs.
- Some products are made available for before production lines are even up and running.
- ✓ Many EPCs still lack solid experience building projects with large format modules.
- ✓ Some investors are still skeptical due to the limited track record of large format modules.







- ✓ Larger (longer) modules imply an increase of tracker's nominal height requiring resizing of piles and other components.
- ✓ The arrival of LFM on the market can cause long lead times and waiting lists at 3<sup>rd</sup> party test labs.
- ✓ Some products are made available for before production lines are even up and running.
- ✓ Many EPCs still lack solid experience building projects with large format modules.
- ✓ Some investors are still skeptical due to the limited track record of large format modules.
- ✓ As manufacturing of modules with smaller cells is being phased out, asset management and O&M companies may face module replacement issues on existing sites.









The tidal wave of Large Format Modules comes at a cost with benefits to be proven over time in the field.





- The tidal wave of Large Format Modules comes at a cost with benefits to be proven over time in the field.
- Key equipment evaluation and selection needs to be in tandem with installation best practices for maximum optimization of Large Format Modules.





The tidal wave of Large Format Modules comes at a cost with benefits to be proven over time in the field.

- Key equipment evaluation and selection needs to be in tandem with installation best practices for maximum optimization of Large Format Modules.
- Collaboration with trusted industry partners and advisors is key to understand, evaluate and successfully implement the Large Format Modules deployment.



### Questions? Thank you!

Tomaso Charlemont Global Solar Procurement Leader +33 633.611.529 tomaso.charlemont@res-group.com Kings Langley, UK Lyon, France www.res-group.com



### Large PV Modules and Solar Trackers

Preparing for Bigger Things to Come

TECH

nextracker

5523

FICHTNER ICS

Mario Riello

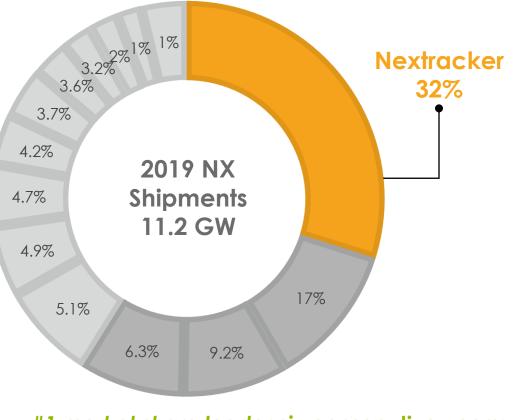
Spring 2021



#### 1. Nextracker intro & track record

- 2. Nextracker Large format Module (LFM) preparedness
- 3. LCOE/LFM considerations




## **Company Overview**

### #1 Global Market Share Leader in Solar Tracking

- Shipped 13 GW in 2020 with 50 GW of solar tracker systems in operation or under construction in 6 years
- A Flex company
  - \$25Bn annual revenue, \$14Bn balance sheet
- Global presence
  - 400 staff worldwide, 8 global offices
- Robust product lines
  - Solar trackers, software and controls, digital O&M
- Deep PV expertise and experience
  - 350 years of collective PV experience on executive team

**Our Vision-** Renewable energy powers the world – delivering clean, affordable power to all.

**Our Mission-** To be the world's leading energy solutions company delivering the most intelligent, reliable and productive solar power for future generations.



## #1 market share leader six consecutive years: 2015-19

Source: IHS Markit, July 2020



## **Nextracker Industry Firsts**

Nextracker has led the industry in features & capabilities that increase performance while reducing costs for customers and owners





#### Independent Rows Balanced Tracker

93 module row, 1500V 120° tracking range, torsional limiter each pier Self Grounded Tracker

UL2703 & 3703 certification, no need for separate grounding components



Self Powered & Smart Tracker

Eliminates AC power; integrated UPS; wireless communications; smart module

#### Predictive Analytics & Digital O&M<sup>TM</sup>

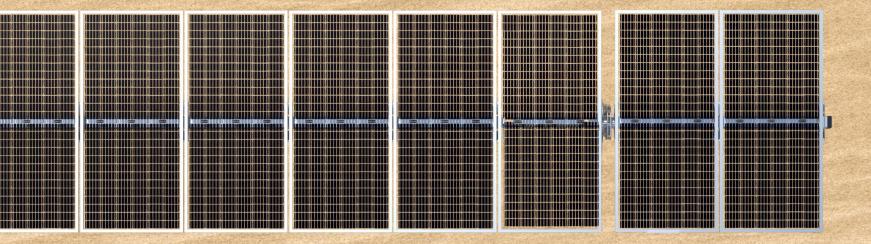
Auto-commissioning, remote monitoring & control; NERC-CIP compliant



Smart Controls & Software

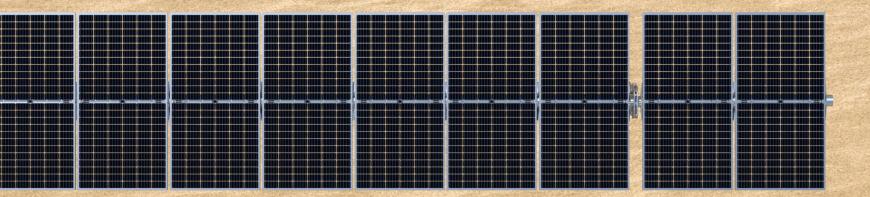
Using machine learning and weather data, TrueCapture & NX Navigator™ enhance energy yield; and mitigates risk of hail stow, hurricane, and snow






1. Nextracker intro & track record

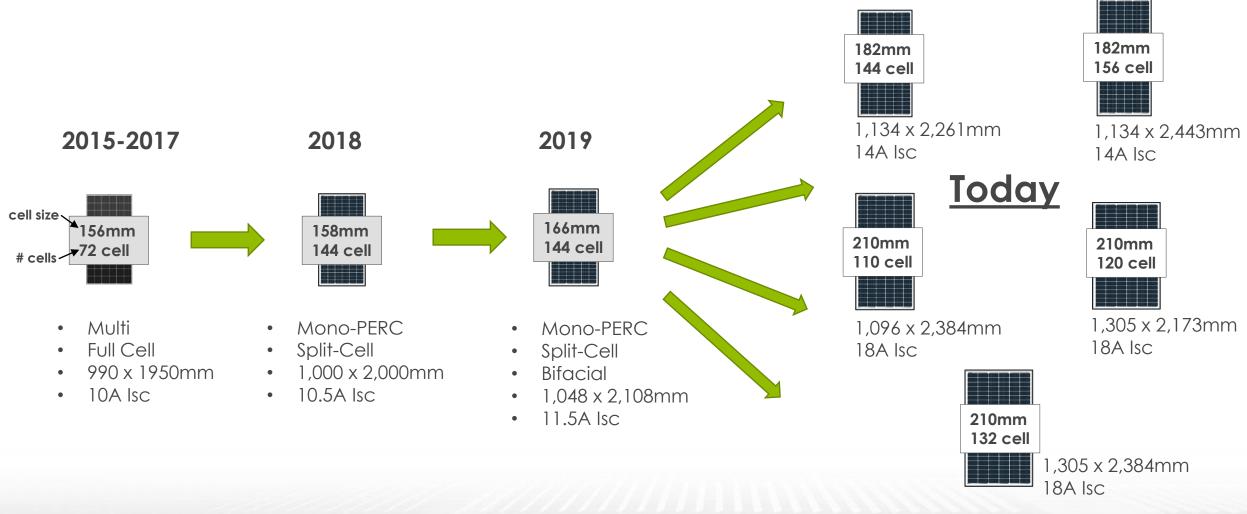
### 2. Nextracker Large format Module (LFM) preparedness


3. LCOE LFM considerations





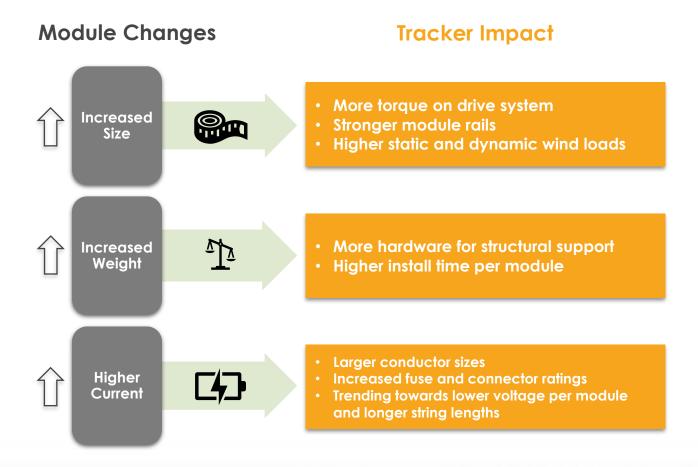
### Nextracker: Going Big the Right Way

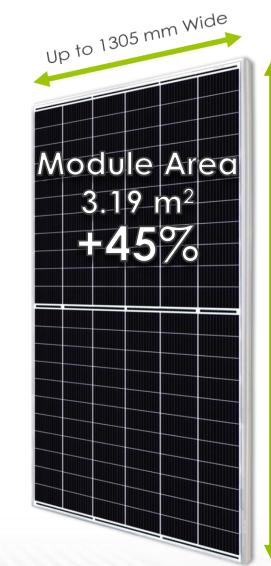

Preparing for a future of large format PV modules





## The Evolution of PV Module Size Formats


Increasing cell size & efficiency to decrease costs






## Implications of LFM for Tracking Systems

Key considerations for tracker preparedness

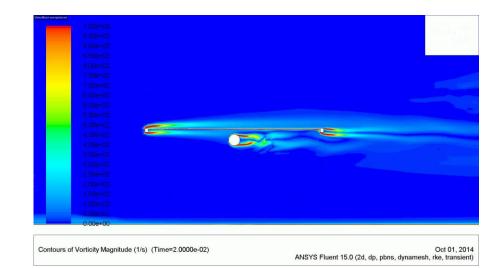




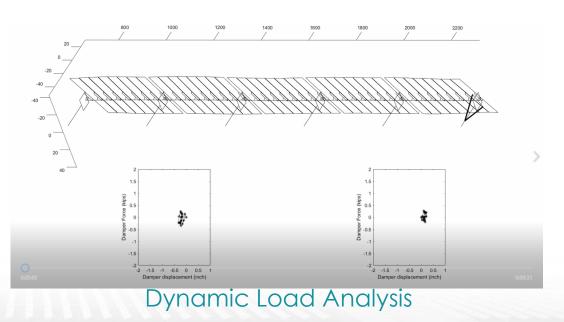
Up to 2445 mm Long

## Large Module Preparedness




### New Wind Tunnel Testing for Large Modules

- Updated wind tunnel testing by CPP
- Ensures stability with even the biggest module form factors


### **Advanced Dynamic Analysis**

Developed by Nextracker and CPP

- Pioneered and completed the most advanced dynamic analysis in the industry
- Predicts and analyzes multiple dynamic modes for large modules with the most state-of-the-art methods



### Dynamic Response of a Tracker





## Future-proof: PV Module Validation Program

### Nextracker Validates Each Module Type

by both Nextracker and Module Suppliers

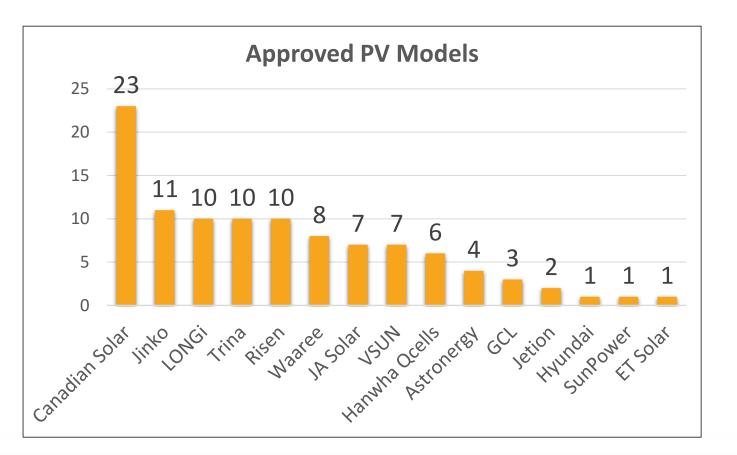
- Module Brand
- Dimension
- Weight





**Nextracker Test Lab:** Nextracker goes to great lengths to test for each module in our very own test lab.



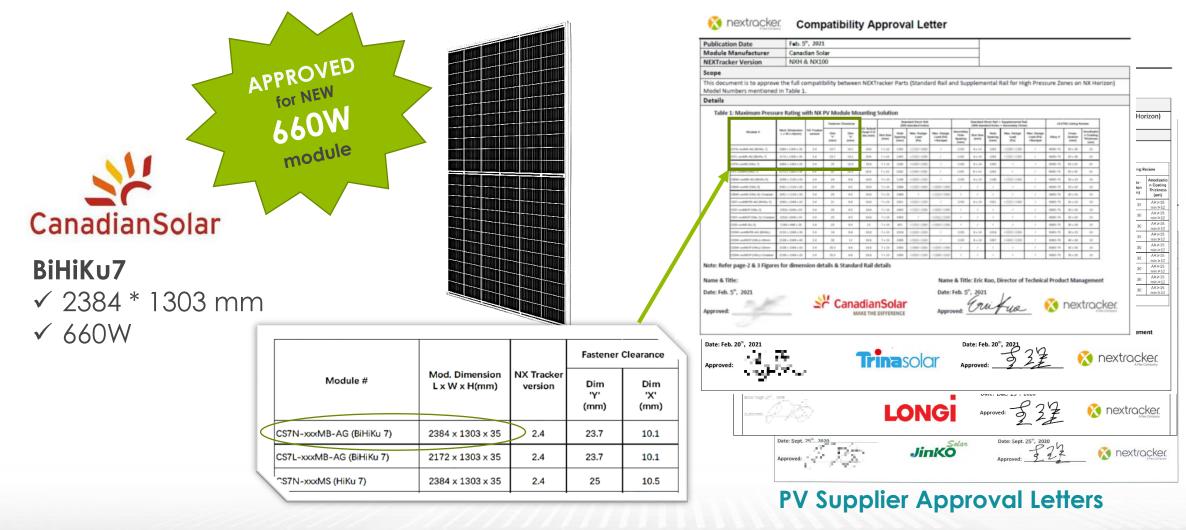

**Supplier Test Lab:** A load test with Nextracker's system at JinkoSolar testing facility.



## **Future-proof: Taking No Chances** Testing for Each and Every PV Model Type with our Tracker

**Ensuring the Highest Quality** and Reliability in the Field:

- 100+ PV Module types • tested and approved
- Written letter of approval from PV supplier






And Many More ....

## Future-proof: Maximum Size Approved

Approved for LARGEST module size forecast for the next 2-3 years

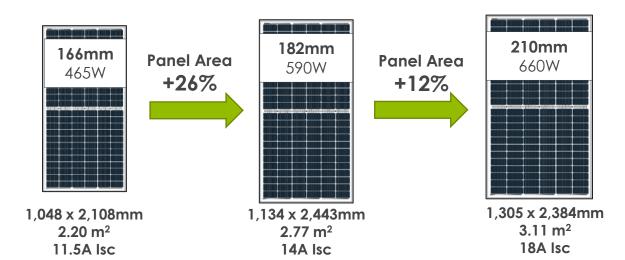






- 1. Nextracker intro & track record
- 2. Nextracker Large format Module (LFM) preparedness
- 3. LCOE/LFM considerations



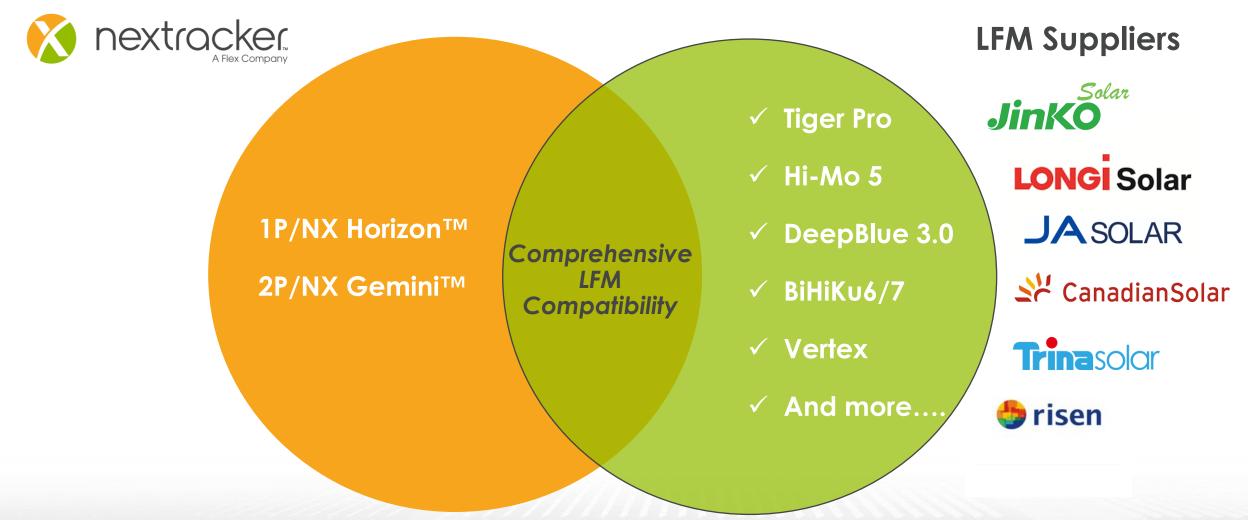

## LFM Impact on LCOE

### Trackers and LFM Highlight:

- More power per tracker row
- More power per total area

### **Downstream Impact per MW:**

- 18 to 22% labor reduction
- 13 to 16% pier reduction
- Less total wiring
- Less land area




| Module<br>Type | Module<br>Power | # of<br>Strings<br>per row | Modules<br>per String | Total # of<br>panels | Power per<br>Tracker<br>Row | Total Panel<br>Area | Power per<br>Area    | Power per Row<br>Delta vs. 166mm |
|----------------|-----------------|----------------------------|-----------------------|----------------------|-----------------------------|---------------------|----------------------|----------------------------------|
| 166mm          | 465W            | 3                          | 28                    | 84                   | 39.0 kW                     | 186 m <sup>2</sup>  | 207 W/m <sup>2</sup> |                                  |
| 182mm          | 590W            | 3                          | 26                    | 78                   | 46.0 kW                     | 216 m <sup>2</sup>  | 212 W/m <sup>2</sup> | +17%                             |
| 210mm          | 660W            | 2                          | 31                    | 62                   | 40.9 kW                     | 193 m <sup>2</sup>  | 212 W/m <sup>2</sup> | +4.9%                            |

**Typical Row Configurations** 



## **Nextracker + Top Tier Module Suppliers**





## Additional Resources – White Paper

Available at <u>www.nextracker.com</u>

White Paper: Mitigating Extreme Weather Risk

**PART 1:** Understanding How Differentiated Design and Control Strategies Unlock New Opportunities for Solar Development

Part 2: Surviving High-Wind Events and Dynamic-Wind Effects with Differentiated Solar Project Design and Control Strategies

 At a minimum, owners and insurers need to ask for a simple explanation as to how companies are achieving lower cost without increasing risk." – David Banks, President, CPP







# Thank you!

Mario Riello VP EMEA Sales <u>mriello@nextracker.com</u>

www.nextracker.com



from the Advisor's perspective:

Large-format Modules (LFM) and Solar Trackers: Key Considerations and Impact on Plant LCOE











Established in 1922 and family-owned ever since



Project experience in more than 170 countries



<sup>1500</sup> employees worldwide – over 500 of these in our HQ

Centers of PV expertise in Germany, Italy, Spain, Great Britain, Turkey, Saudi Arabia, UAE and Malaysia

- > 500 projects in more than 70 countries with a capacity of >50 GW
- 200+ Lenders-Engineering-Projects
- 20+ Owners-Engineering-Projects
- 100+ Feasibility Studies

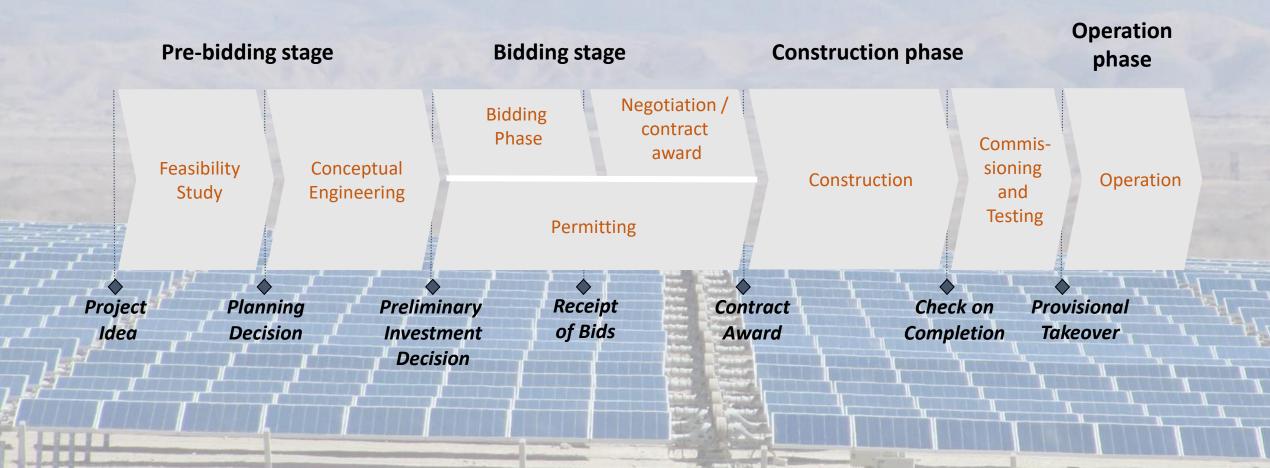


#### **Range of Services**

The Fichtner Group can call on a network of highly qualified engineers and consultants to cover all aspects of solar photovoltaic power generation and hybrid solutions.

- Owner's Engineer (OE), all project phases
- Lender's Technical Advisor (LTA)
- Transaction Advisor on large scale IPP projects
- Technical Due Diligence
- Feasibility Studies (concept design, yield simulation...)
- Construction supervision
- Witnessing the commissioning, acceptance and performance tests
- Monitoring of plant operation and maintenance

#### **Recent project highlights**


- Talasol PV plant in Spain, 300 MW
- Sweihan and Al Dhafra in Abu Dhabi, 1,170 MWp and 2,101 MWp
- MBR Solar Park Phases III and V in Dubai, 800 MW and 900 MW
- Ibri II and Manah PV IPP's in Oman, 3x 500 MW
- Sakaka, Saudi Arabia, 300 MW





### Can Large Format Modules (LFM) work reliably with trackers while meeting LCOE requirements?

- Proper design and quality control is essential for a successful project implementation and operation
- Different quality criteria in different phases of a project
- Early involvement of tracker supplier during all project phases





### Pre-bidding stage

**Bidding stage** 

#### **Construction phase**

2346,0

**Operation phase** 

Consideration of impact of larger modules on trackers, e.g. :

- PV module eligibility requirements
- Track record & certificates
- Confirmation of compatibility with the (pre-)selected tracker
- Structural requirements
- Track record & tests: wind tunnel tests, tracker dynamic analysis, full scale outdoor tests (module size, loads, bifacial operation)
- Adjustment of stow strategy
- Adjustment of module cleaning procedure (cleaning robots)
- Option: independent certification and due diligence for prequalification of tracker suppliers or product

Example for module eligibility requirements

- Track record / references from a renowned PV module supplier
- Relevant certificates, e.g.
  - IEC 61215 type approval
  - IEC 61730 module safety
  - IEC 60068-2-68 Environmental testing
  - IEC TS 62804-1 PID free
  - IEC 61701 Salt mist corrosion testing
- product warranty > 10 years
- power output warranty 30 years



#### **Pre-bidding stage**



#### **Construction phase**

**Operation phase** 

**Bidding stage:** 

- Minimum Function Specification (MFS) defines all requirements for the overall system and the components:
  - Site specific
  - Civil
  - Electrical
- Consideration of the site conditions for the bid-design:
  - Design wind speed (ref. at 10m as 3 sec gust and 10 min average)
  - Geotechnical survey (core samples, test pits: drilling / ramming)
  - Topographic study
- Responsibilities to be clarified for the site-specific design: structure, foundation, installation
- Warranties for the tracking system to be well structured with clearly defined interfaces







#### **Pre-bidding stage**

**Bidding stage** 

#### **Construction phase**

**Operation phase** 





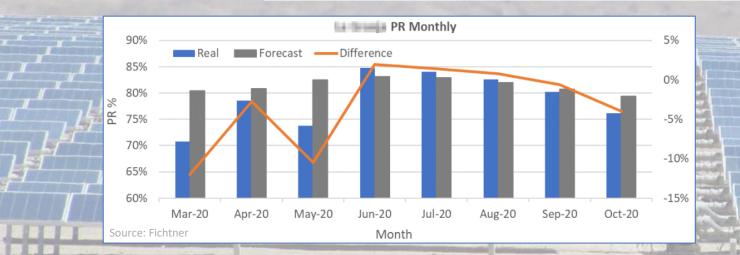
**Requirements during the construction phase:** 

- Procedure and criteria to be defined for a potential PV module replacement during late procurement phase
- High-quality and complete set of documents available at early stage for the detail design review
- Commissioning with sufficient and experienced staff
- Role of the Owner's Engineer
  - design review
  - check quality of supplied materials (e.g. coating thickness)
  - construction supervision (e.g. foundation, structure and module installation)
  - supervise the QA/QC procedure from the EPC contractor who must comply with the design and the specification
  - attend the commissioning, acceptance and performance tests





#### **Pre-bidding stage**


**Bidding stage** 

#### **Construction phase**

#### **Operation phase**

**Operation phase:** 

- On-site presence is the responsibility of the EPC contractor, but if required: tracker supplier stays at the site during the first weeks after PAC/COD for finetuning
  - Signal exchange, SCADA / monitoring
  - Quick reaction time for teething problems
- Frequent module cleaning (dry or water, manual or automatic) as well as high tracker availability can lead to the expected generation and a high PV plant performance (PR)









#### Lessons learnt - examples



- real site conditions are considered (design wind speed, soil conditions, topography)
- wind mast with sufficient height is installed at the site
- manpower is sufficient to unpack and mount large and heavy modules
- tracker unavailability is properly defined in the contracts
- $\rightarrow$  Avoidance of delay, downtime, underperformance, corrective actions, warranty claims, LD's...











### Thank you!

#### **Contact** Fichtner GmbH & Co. KG Sarweystrasse 3 70191 Stuttgart

Germany

www.fichtner.de

#### Fabian Kuhn

 Phone
 +49 (711) 8995-782

 Mobil
 +49 (179) 4519 007

 Fabian.kuhn@fichtner.de

#### **Dr. Martin Stickel**

 Phone
 +49 (711) 8995-684

 Mobil
 +49 (172) 6358 294

 Martin.stickel@fichtner.de

ENGINEERING - CONSULTING