

THURSDAY, NOVEMBER 19th

FuturaSun brings European n-type mono IBC '**ZEBRA**' panel technology to market

Presented by:

Mark Osborne Senior Editor PV Tech

Alessandro Barin CEO FuturaSun

es

uaranteed

nteed

Lisa Hirvonen Sales Engineer FuturaSun

The Company About Us

- **FuturaSun** was founded by PV experts from the Venetian Region of Italy in **2008**.
- Combined knowlegde in PV with the dynamism of the Chinese supply chain
- > Active in almost 70 countries
-) 1st Italian Solar Panel manufacturing in China
- 2 production plants located in Taizhou, China with a annual production capacity of 1 GW.

N-Type technology Differences P-Type Vs. N-Type

P-Type (positive base)

- > Mature and cost effective product
- Doped with boron
-) One electron less making it positively charge
- **P-type cells suffer from LID** (Light Induced Degradation)
- Causes a reduction of efficiency up to 5%

N-Type technology Differences P-Type Vs. N-Type

N-Type (negative base)

- > Is doped with phosphorus
- > With **one electron more** making it negetively charged
- > This extra electron **boosts the efficiency**
- > N-Type cells are immune to degradation issues like LID and LeTID
- Low temperature coefficient excellent performance also at high temperatures
-) More kWh per kWp
- > A sustainable choice for your business plan

ZEBRA

PV panel with 120 IBC half-cut cells Industry standard 60 cell sizing

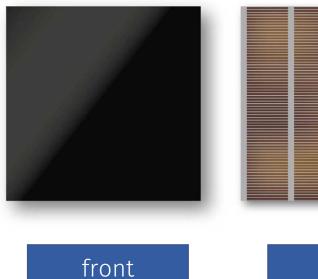
N-Type technology Back to the original

The **very first solar cell** made of silicon was an **n-type back contact** solar cell and it was fabricated at the Bell Labs, USA, in 1954.

We are now **returning to the original** of using N-type wafers to **benefit the several advantages** that this technology has to offer.

The New York Times - April 25 th 1954

"may mark the beginning of a new era, leading eventually to the realization of one of mankind's most cherished dreams-the harnessing of the almost limitless energy of the sun for the uses of civilization."

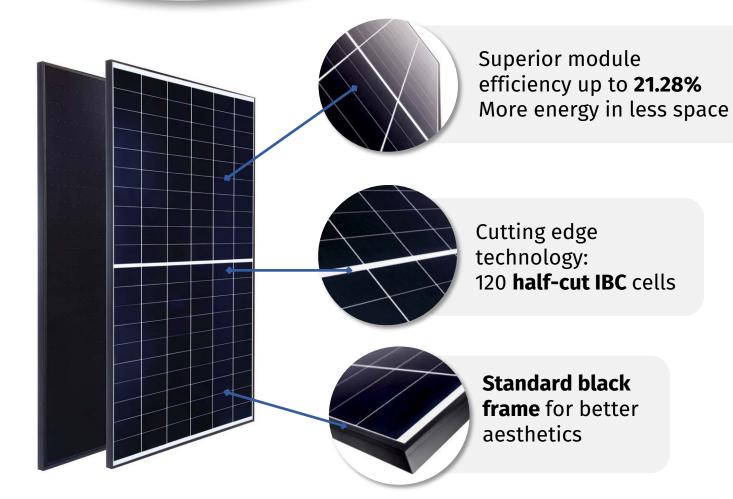


ZEBRA IBC Technology

IBC - Interdigitated Back Contact cells

back

Innovative technology **developed in Europe** by **ISC Konstanz**



- Industry leading cell efficiency:23.5%
- Based on G1 (158.75 x 158.75 mm)
 N-TYPE Cz-Si wafers

ZEBRA series Standard White | FU350-360M Total Black | FU340-350M

up to 360 W

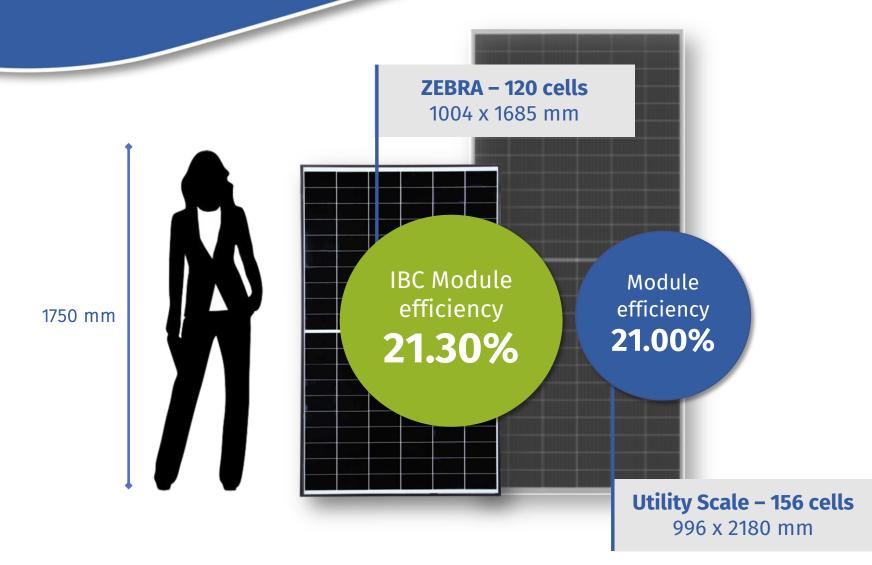
Elegant total black design for buildings with a high architectural value **IBC Cells** Electrical contacts on the back


)

Standard
 Monocrystalline
 5 BB cells

IBC – Interdigitated Back Contact cells

front



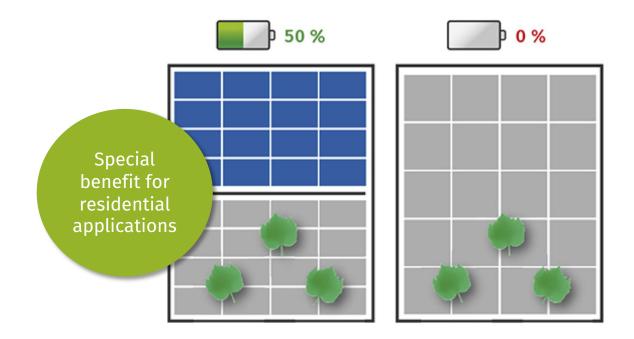
- > No shades on the cell caused by ribbons or busbars
-) Maximum light absorption

FU350-360M ZEBRA

Dimension comparable to a standard 60 cell panel

Why ZEBRA panels are immune from LID and LeTID?

LID

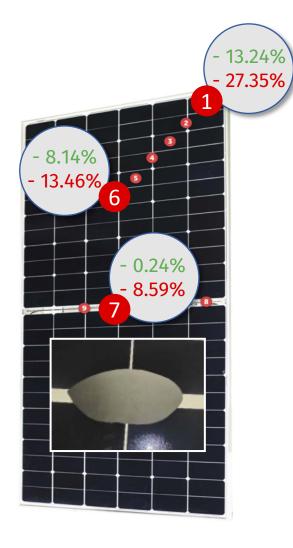

Light Induced Degradation

- LID is the degradation of the module, which occurs in the **first few** hours of sun exposure. 95% of the cells worldwide are subject to this effect, in particular high efficiency cells.
- LID causes a **reduction in efficiency from 1 to 5 %**.
- The LeTID degradation combines the effect of light with the effect of high temperatures and can also create power losses between 1 to 6 %.
- > Since N-Type cells are doped with **phosphorus and not boron, Zebra cells are immune** to these phenomena.
 - ZEBRA cells do not degrade under UV illumination.

ZEBRA – IBC half-cut technology

Improved behavior under shaded conditions

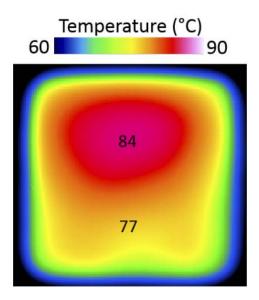
- > ZEBRA is the only IBC module available with half-cut cells
- **2 independent section** design secures a higher energy yield in case of shading
- > Shading, a typical problem of residential installations
- > Simplifies the design of the installation
- > Minimize the need of optmizers

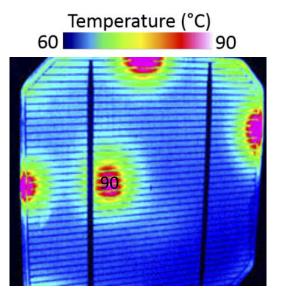

ZEBRA

Improved behavior under shaded conditions

Test to verify **the loss due to localized shadows** (leaf positioned on the red dots)

Location	ZEBRA loss	PERC loss	Mark
No Shading	0.00%	0.00%	Shaded 0 cells
1	13.24%	27.35%	Shaded 1 cell
2	8.62%	12.45%	Shaded 2 cells
3	14.19%	28.50%	Shaded 1 cell
4	10.61%	13.40%	Shaded 2 cells
5	14.40%	28.98%	Shaded 1 cell
6	8.14%	13.46%	Shaded 2 cells
7	0.24%	8.59%	Shaded 4 cells
8	11.83%	18.63%	Shaded 2 cells
9	1.63%	7.19%	Shaded 4 cells

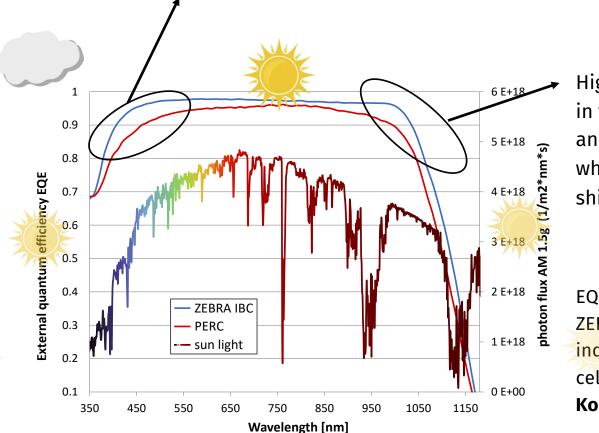




• Thanks to the distributed junction, **ZEBRA dissipates the power in reverse bias over a larger area** and remains at a lower temperature, **minimizing the risk of damaging the panel**.

ZEBRA IBC CELL

PERC CELL

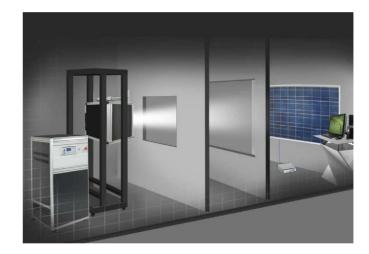

*lab stress test

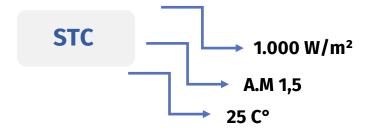
ZEBRA Improved low light performance

Higher output / longer duration

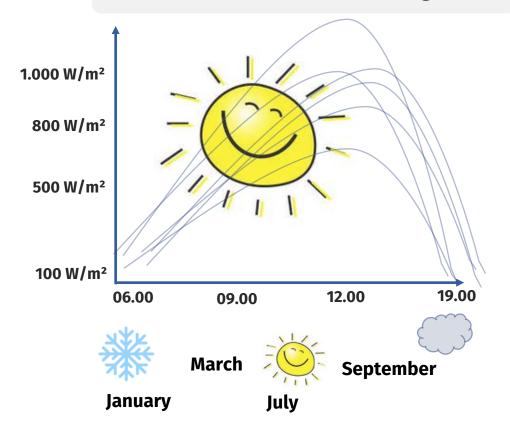
Inverter switches on **earlier in the morning** and switches off **later in the evening**

Higher generation on **cloudy days**, when **light** is shifted to **blue**


Higher generation in the mornings and the evenings, when **light** is shifted to **red**

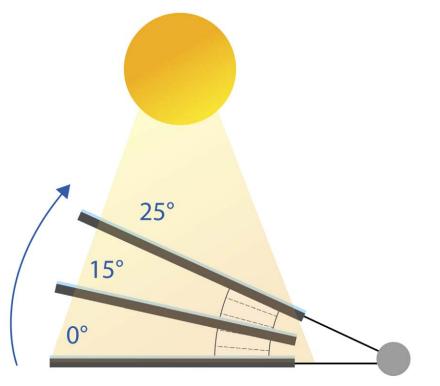

EQE comparison of ZEBRA cell with industrial 9BB PERC cell, measured at **ISC Konstanz**

Factory Vs Outdoor



Factory: perfectly perpendicular light

Outdoor: various tilts and angles

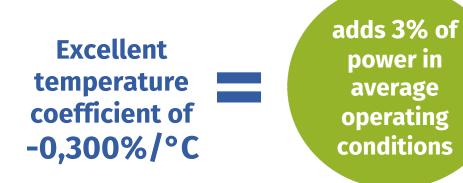


)

Test to check the performance at different angles compared to perpendicular STC conditions.

Angle	Power Gain ZEBRA	Power Gain PERC
0 °	100.0%	100.0%
5 °	103.4%	100.9%
10 °	102.9%	100.7%
15 °	101.2%	99.5%
20 °	98.6%	97.1%
25 °	94.8%	93.2%

ZEBRA


Excellent temperature coefficient

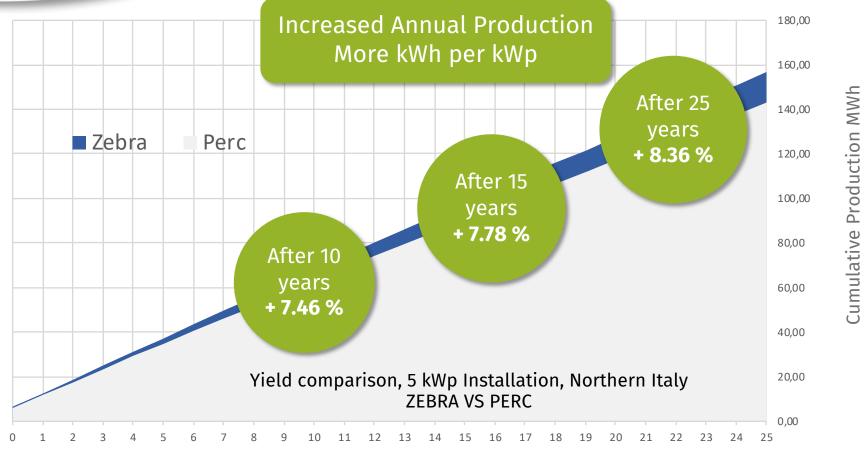
The **temperature coefficient** indicates the module's power loss with **increasing temperatures.**

A low temperature coefficient **ensures a higher yield during hot weather condtions**.

ZEBRA voltage 700 mV – ensures a low temperature coefficient.

Accumulative financial gain over time Cost difference: IBC ZEBRA Vs PERC

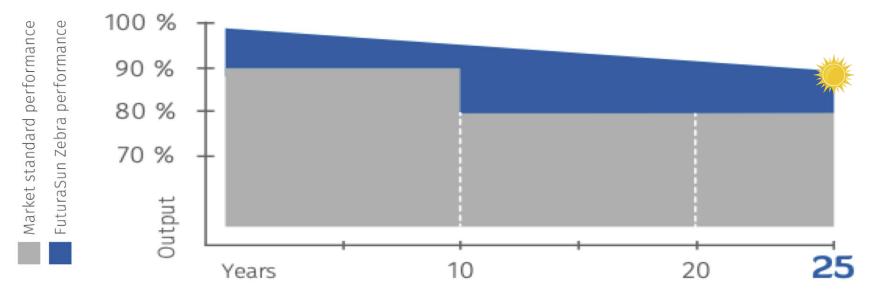
_OSS


Gain

More kWh per kWp Comparison with traditional installations

ZEBRA Key benefits

- > Perfection in aesthetic design
- Superior energy performance
- > More kWh per kWp
- Reliability & Availability
- Competitive cost compared to other high-end panels


ZEBRA Warranties

Product guarantee

Performance guarantee Max power decrease **0.4%**/year **1st year degradation - 1.0%** 99% at the end of first year **89% at the end of 25th year**

Thanks for your attention! Please contact us for more information!

FuturaSun Srl Riva del Pasubio 14 - 35013 Cittadella (PD) Italy Tel. +39 049 5979802 | info@futurasun.it | www.futurasun.com

State of the art certifications

Worldwide installation track record

FuturaSun Facebook page: **@anticipate tomorrow**

FuturaSun LinkedIn page: FuturaSun Srl