2020

New TrinaTracker

For Vertex Module

Trina Vertex module 600W module background

- Review from 2009 2019, module power bin increased annually between 5~10W
- Since 2019, module power bin increased by ~100W, in the 500W+ era
- The Wp increase in last year is more than the cumulative in the last 10 years

Opvtech TECHTalk

Trinasolar

How will Trina's Vertex module impacts tracker design?

Devtech TECHTalk Trinasolar

	Vanguard	™550	Agile [™] 550
Vertex Module 550W	Vanguard 550-2P	Vanguard 550-1P	Agile 550-1P
Increased size & bifacial feature	 Vanguard is suitable for complex Independent tows can adapt to conditions 	k terrains uneven ground mounted	 Agile is robust and easy install Protects against wind issue dynamics Dual rows adapt to ground mounted conditions

Орутесн TECHTalk Trinasolar

2P Product					
		Trina 2020	Trina 2019		
Tra	ncker Type	Vanguard 550 2P	SP160 (2V*45) 400W		
Row size (modules number per row)		120 pcs	90 pcs		
Row	s per tracker	1	1		
TCU	unit (/MW)	1	1		
Wind tunnel test	Length of tracker	65m-》68m	45 m		
wind tunnel test	Width of tracker	4.73m -》 5m	4.73m		
Trac	king range	±55°	±55°		
environment temperature range		-30°C~60°C	-30°C~60°C		
Terra	in adaptation	Up to 15% N-S -》20%	Up to 15% N-S		
Allowal	ble wind speed	135mph (3s)	100mph (3s)		
Piles per tracker (/MW) 500W		7 (117 piles/MW)	9 (Slew driver:195 piles/MW)/ (Linear actuator:222 pile/MW)		
Communications		ZigBee 、LoRa wireless/ RS485	ZigBee / RS485		
Power supply		AC powered/ Self powered/	AC powered/ Self powered		

TrinaTracker Vanguard 550-2P Design Overview

PVTECH TECHTalk Trinasolar

High Stability and accuracy

• Torque transfer length 50% shorter, transfer efficiency improved, single motor drive, consistency improved, tracking accuracy reaches 1°

High Safety

• Multi-point drive has self-locking function for maximum wind stability

High reliability

- Cooperate with authoritative wind tunnel firm RWDI
- 20+ weeks testing period Passed static test/dynamic test /aero instability test

TrinaTracker product: global patented spherical bearing

Cylindrical bearing

• Conventional tracker bearing: Non-Adjustable rigid design makes the system unstable and causes significant stress

Spherical bearing

OPVTECH TECHTalk Trinasolar

Trina tracker bearing: Global Patented Spherical Bearing: Up to 30% Angle Adjustability to minimize stress

- Tracker contained in the plane
- Matches ground
- Minimizes stress

Highlights & features of SuperTrack

Smart Tracking Algorithm

Smart Backtracking Algorithm

PVTECH TECHTalk Trinasolar

SuperTrack[™] is featured with two patented technologies. Smart Tracking Algorithm (STA) is to optimize for high diffuse irradiation and 'Smart Backtracking Algorithm' (SBA) for undulating terrains.

Energy Gains of SuperTrack (8/19~9/17)

Inverter	8	13	14
Algorithm Type	SuperTrack	SuperTrack	Conventional Algorithm
Cumulative Energy Gain (Inverter Level-9 Trackers)	3.8%	3.2%	BL
Maximum Energy Gain (MPPT Level-Single Tracker)	6.4%	5.0%	BL

Energy gains of SuperTrack during cloudy and sunny time

Trinasolar

🞧рутесн **TECHT**alk

* Tongchuan, China project

Compared with the conventional algorithm the LCOE is lower

Summary

More Reliable Tracker

- Multi-drive system
- Reinforced structure design
- Patented Spherical bearing

More Energy Yield

- Bifacial tracking algorithm
- Optimal back tracking under uneven terrain and cloudy days
- SCADA smart monitoring and O&M advice

Lower Capex

- Lower BOS cost compared to old generation
- Lower installation and O&M cost due to quick mount solution and standardized pile design

TrinaTracker Global Presence

5GW+ deployed worldwide

OPVTECH TECHTalk Trinasolar

www.trinasolar.com

Adapting PV inverters to the new era of 500Wp+ PV modules

OPVTECH TECHTalk

Higher PV module power leads to lower system cost

• Compared to 345Wp, 455Wp modules save cable and mounting system cost 1.6 ¢ /Wp

P=V*I: 500W+ PV module means higher voltage or current

Higher Voltage

- Shorter string, more strings, mounting cost increased
- Higher system voltage, need to update system devices and amend standard

Higher Current

- Longer string, less strings, mounting and cable cost decreased
- Higher string current, higher cable loss, need to updated DC combiner and inverters

1500V system, higher current PV module is more competitive

Inverter solutions for 500W+ PV module era

How string inverters match 500W+ PV module era

Why 500W+ PV modules benefit total PV system

- Lower system cost benefit from high current module
- Lower DC cable loss benefit from high voltage module
- Need to do the balance between cost, efficiency and local conditions

Module	210 & 545Wp	182 & 535Wp	
Open Circuit Voltage (V)	38.1	49.35	
Short Circuit Current (A)	18.47	13.78	
Voltage for Pn (V)	31.7	41.5	
Current for Pn (A)	17.17	12.9	
Dimensions (mm)	2389*1102	2256*1133	
String Design	36 pcs / string	28 pcs / string	
Fixed Mounting	2*36 portrait	2*28 portrait	
Tracker	2р	2р	
Max. DC Voltage (V)	1500V	1500V	

Innovation trends of PV inverters

PVTECH **TECHT**alk

Two Key-point for System Innovation

Δ

DC Side: Lower LCOE

AC Side: Grid Support, Reliable Connection

- High DC/AC Ratio, Large Capacity
- High Efficiency, High yielding
- All-in-one. Low O&M Cost

- Larger inverter capacity, Less equipment quantity
- Centralized layout, fast delivery
- PV & ESS, Support Grid

OPVTECH TECHTalk

SUNGROW

Higher integration and compatibility

Self-constructed grid for pre-commissioning

• Self constructed grid for equipment hot-commission before connecting to grid.

Technical innovation of SG250HX String Inverter

Optimal LCOE Lower CPAEX High Yield High reliability

Grid Support Support lower SCR Fusion of PV and energy storage

- Grid parity era is coming, the optimal LCOE is the best choice for PV Plant
- Renewable energy is continuously connected to the power grid, and grid friendliness has become an essential feature of the inverter

PID 3.0 technology: Higher yield and lower cost

Smart online IV curve Scanning, 100MW in 10-mins

17 Fault Categories

Global Leading Inverter Supplier 2015 ~ 2020

Sungrow PV Inverter Shipment (GW)

Clean power for all

Trina Vertex module LCOE comparison

MinWah Leung

DNV GL Energy USA, Inc - Solar

17 November 2020

DNVGL

System configuration

Module power	450 W	535 W	545 W				
Module		Trina bifacial					
Dimensions L x W [mm]	2111 x 1046	2256 x 1131	2384 x 1096 懀				
Modules/string	27	27	35				
# modules	244,350	205,389	201,600 🔶				
Inverter	Sungrow SG250HX (string inverter)						
Inverter capacity		225 kWdc					
# inverters		445					
Tracker	NexT	racker (1 module por	trait)				
Modules per tracker	81 (3 strings)	70 (2 strings)					
Tracker length [m]	85.1	92.2	77.4 🖊				
# trackers	3,017 2,536		2,880 懀				
Transformers		44 x 2.5 MW					
		1 x 1.5 MW					
DC Capacity	110 MWdc						
AC Capacity		100 Mwac					
DC/AC ratio		1.1					
Pitch [m]	6.55 7.00 7.41						
Ground cover ratio (GCR)		32%					

- 545 W Vertex module: low voltage, high current
 - More modules per string, fewer # of modules
 - Tracker can't support as many larger modules
 -> shorter trackers -> more trackers
- Same DC & AC system capacity
- Same GCR: maintain bifacial & shading impacts

Increase from prior module rating 🕇 Decrease from prior module rating 🔶

Inverters

	450 W	535 W	545 W
Cell size	166mm	182mm	210mm
Cell cut	Half cut	Half cut	Third cut
lsc	11.4 A	12.9 A	18.4 A
Voc	49.5 V	51.5 V	37.9 V

Inverter string input now typically 15 A, future need to design for 20 A strings to be compatible with larger modules Compared to 535W, <u>shorter DC homerun</u> wiring (each string has more modules), <u>longer AC wiring</u>

450 Wp	535 Wp	545Wp
953,243	775,721	511,609
		-34%
154,213	138,668	165,628
		19%
35,382	33,740	36,283
		8%
	450 Wp 953,243 154,213 35,382	450 Wp 535 Wp 953,243 775,721 154,213 138,668 35,382 33,740

Wire length

Energy model

Texas, USA (34.36°, -99.89°)

		Seville, Spain			Texas, USA			
	450 W	535 W	545W	450 W	535 W	545 W		
Global horizontal irradiation	1,	,855 kWh/m²/	yr	1	,865 kWh/m²/	yr	Energy increase v	v/ 🔶
Diffuse horizontal irradiation	(605 kWh/m²/y	r	!	567 kWh/m²/y	r	module pow	er
Ambient Temperature		18.9 °C			17.5 °C		Energy decrease v	v/
Global irradiation plane-of-array	2,	,506 kWh/m²/	yr	2	,540 kWh/m²/	yr	module pow	er 🦊
Soiling		-1.4%			-1.0%		2 washes / year	
Ground reflection on front side		0.0%			0.0%		albedo 0.2	
Bifacial energy gain	+5.8%	+5.6%	+5.4%	+5.5%	+5.4%	+5.3%		
Irradiance	-0.2%	+0.4%	0.3%	-0.2%	+0.3%	+0.2%		
Temperature	-6.0%	-5.9%	-5.8%	-5.9%	-5.8%	-5.6%		
Module quality	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%		
Light induced degradation		-1.5%			-1.5%			
Mismatch		-0.5%			-0.5%			
Mismatch for back irradiance		-0.7%			-0.1%			
DC Ohmic	-0.5%	-0.6%	-0.8%	-0.6%	-0.7%	-0.9%	+	
Low irradiance efficiency fall off	-0.2%	+0.4%	+0.3%	-0.2%	+0.3%	+0.2%		
AC Ohmic	-0.8%	-0.7%	-0.5%	-0.8%	-0.7%	-0.5%	1	
Transformer losses		-2.1%			-2.1%			
Auxiliary losses		-0.3%			-0.3%			
System unavailability		-0.8%			-0.8%			
Yield Factor [kWh/kWp]	2,239	2,249	2,249	2,263	2,275	2,274		

DC/AC wire losses balance out, similar energy yield factor

- EPC cost decrease for 545 W
 - Fewer modules, higher power rating for same module price
 - $_{\odot}~$ Overall 545 W has less tracker material
 - $\,\circ\,\,$ Less DC wiring and cost of DC cable lower
- OPEX, development fees same

Takeaways

- ✤ The LCOE cost for 545 W modules lower than 535 W.
- LCOE could be even lower when trackers optimized to fit 3 modules per string
- This calculation assumes inverters can have higher string input 20A, but product not available yet.

$COE = \frac{Cost}{Cost}$	S	Seville, Spain			Texas, USA USD \$/Wp			
Energy	Euro €/Wp							
	450 W	535 W	545 W	450 W	535 W	545 W		
Module		0.1932		0.3200				
Inverter		0.0257		0.0279				
Tracker & mounting	0.1000	0.0896	0.0885	0.1260 0.1124 0.1115				
EPC cost	0.5268	0.5079	0.5052	0.9533 0.9222 0.9132		0.9132		
Development		0.1138			0.1567			
CAPEX	0.6406	0.6217	0.6190	1.1099	1.0788	1.0699		
Land		0.0017			0.0033			
O&M fee		0.0150			0.0082			
Asset management		0.0020			0.0015			
OPEX		0.0187			0.0130			
		Euro €/kWh			USD \$/kWl	า		
LCOE	0.0366	0.0357	0.0356	0.0451	0.0437	0.0435		
LCOF compare 450 W		-2.5%	-2.8%		-3.0%	-3.5%		

¹ Cost estimations based on similar projects in Spain and USA. Tracker costs provided by NexTracker based on tracker estimated tracker dimension changes for similar 545 W modules

² Results comparable to industry reports system pricing. Wood Mackenzie, U.S. Solar PV System Cost Model, H1 2020

JPVTECH TECHTalk

Questions?

MinWah Leung minwah.leung@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.

