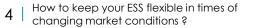
How to keep your ESS flexible in times of changing market conditions

contact.webinar@saftbatteries.com

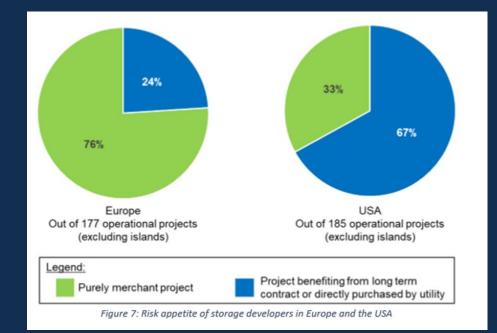
Content

- 1. Why be flexible?
- 2. Three recommendations to stay flexible
- Key points for implementation
 Design Options


What are the main challenges in doing business with energy storage systems today ?

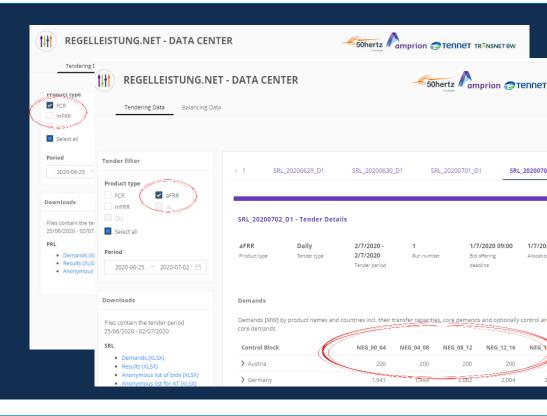
WHAT'S DRIVING THE NEED FOR FLEXIBLE ESS ?

- MICHAEL LIPPERT



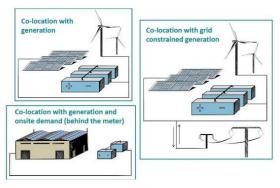
Merchant Business

- ...with short contract duration replacing long term contracts
- …needs service stacking when markets saturate



Merchant Business

- ...with short contract duration replacing long term contracts
- …needs service stacking when markets saturate



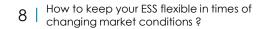
Merchant Business

- ...with short contract duration replacing long term contracts
- …needs service stacking when markets saturate

National Grid: 'Don't put all your eggs in the frequency response basket'

The different business cases for co-location energy storage with generation. Image: Regen.

A representative of National Grid, the UK's transmission system operator (TSO), has said that energy storage will be "integral" to the network's flexibility strategy – while urging developers not to rely solely on early frequency regulation contracts.



New opportunities

 ...for additional revenue can arise from new grid services and system needs

Existing	Emerging	Future
Arbitrage / Solar time shifting	Reactive Power Compensation	Synthetic Inertia

Existing - Emerging - Future ESS applications

Source: EASE

Generation / System Support	Existing Ancillary Services	New Ancillary Services	Transmission Infrastructure	Distribution Infrastructure	Customer Energy Management
Arbitrage	Frequency Containment Reserve (FCR)	Enhanced Frequency Response (EFR)	Transmission Grid Upgrade Deferral	Distribution Grid Upgrade Deferral	End-User Peak Shaving
Electricity Supply Capacity	Frequency Restoration Reserve - Automatic (aFRR) - Manual (mFRR)	Synchronous Inertial Response (SIR)	Contingency Grid Support	Contingency Grid Support	Time-of-use Energy Cost Management
Support to Conventional Generation	Replacement Reserve (RR)	Synthetic Inertia (SI)	Transmission Support	Dynamic Local Voltage Control	Particular Requirements in Power-Quality
Ancillary Services RES Support	Load Following	Dynamic Reactive Response (DRR)	Angular Stability	Intentional Islanding	Maximising self- production and self- consumption
Capacity Firming	Frequency Stability of Weak Grids	Fast Frequency Response (FFR)	Reactive Power Compensation	Reactive Power Compensation	Continuity of Energy Supply
RES Curtailment Minimisation	Black Start	Fast Post-Fault Active Power Recovery	Cross Sectoral Storage	Cross Sectoral Storage	Limitation of Upstream Disturbances
Seasonal Arbitrage	Voltage Support	Ramping Margin	Power Oscillation Damping	EV charging infrastructure	Compensation of the Reactive Power
9 How to keep your ESS flexible in times of changing market conditions?					

Future no clear monetization/ tendering framework existing or expected in near future

Technical Rules

- ...can change

GRID SCALE BUSINESS MARKET WATCH POLICY TECHNOLOGY

PJM's frequency regulation rule changes causing 'significant and detrimental harm'

GRID SCALE

BUSINESS

Published: 18 Apr 2017, 15:38 By: Andy Colthorpe

60000

significant and detrimental aarm' Battery storage will be hit by UK's proposed Capacity Market derating changes

Image: Anesco.

The UK government Department for Business, Energy and Industrial Strategy (BEIS) has incurred the wrath of battery storage asset owners by proposing significant changes to how their generation

RES' Jake and Eliwood energy storage projects, among the 265MW of such resources deployed in PJMs service area, image: PES.

Energy storage companies "have suffered significant and detrimental harm" from changes to rules governing the frequency

Regulation

- ...can evolve

Merchant Business

- ...with short contract duration replacing long term contracts
- …needs service stacking when markets saturate

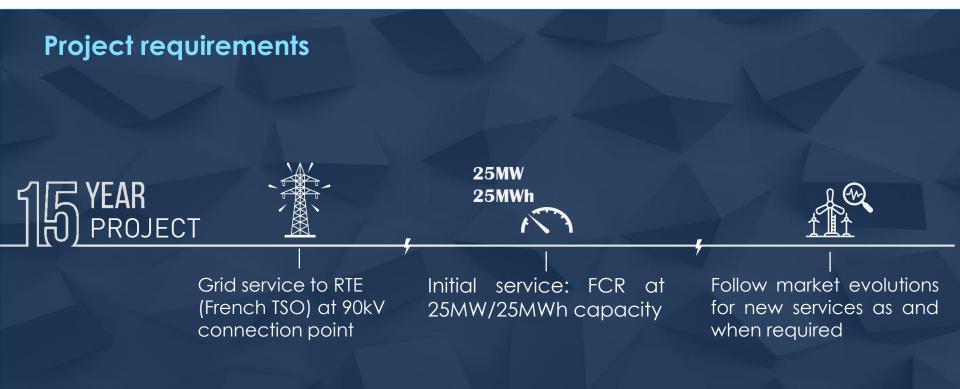
Technical Rules

....can change

New opportunities

 ...for additional revenue can arise from new grid services and system needs

^{- ...}can evolve


A REAL CASE : TOTAL DUNKIRK

- DANIEL LACOMBE

Case Study: Dunkirk I

Battery storage solution to supply the French grid operator with FCR services

Case Study: Dunkirk I

Battery storage solution to supply the French grid operator with FCR services

Case Study: Dunkirk I

Battery storage solution to supply the French grid operator with FCR services

Clients' focus

Enhanced safety

Sustained capacity

Reliability of system and of revenues

1st project before repeat deals up to **130MW**

FLEXIBLE Energy Storage System

16 | How to keep your ESS flexible in times of changing market conditions ?

THREE RECOMMENDATIONS TO STAY FLEXIBLE

- MICHAEL LIPPERT

17 | How to keep your ESS flexible in times of changing market conditions ?

✓ ==:	
~ ===	
$\sim =$	
Ľ	

Enable multiple operation patterns


Enable adjustment of power and energy over time

 ESS solution versatile enough to fulfill multiple operation profiles

 Increase energy of a given ESS as needed

Enable implementation of flexible guarantees

- Performance parameters are flexible enough to cover evolving operation patterns
- Implement adequate controls and data management

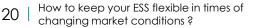
Enable multiple operation patterns

Parameters

- Power bol / eol
 Peak power
 Power density
- Thermal behavior
- Energy throughput

Benefits

- 1. Avoid re-designing solution for each single project
- 2. Be able to adapt when market rules change


Enable adjustment of power and energy over time

Parameters

- Stability of operation profile
- KPI to optimize: LCOE, NPV, Capex, ...

Benefits

- 1. Ability to seize additional revenue streams
- 2. Augment when and only when it is needed
- 3. Shift Capex to Opex and benefit from decreasing prices

Enable implementation of flexible guarantees

Parameters

- Uptime
- Capacity
- Energy efficiency
- Remote monitoring of key KPI's

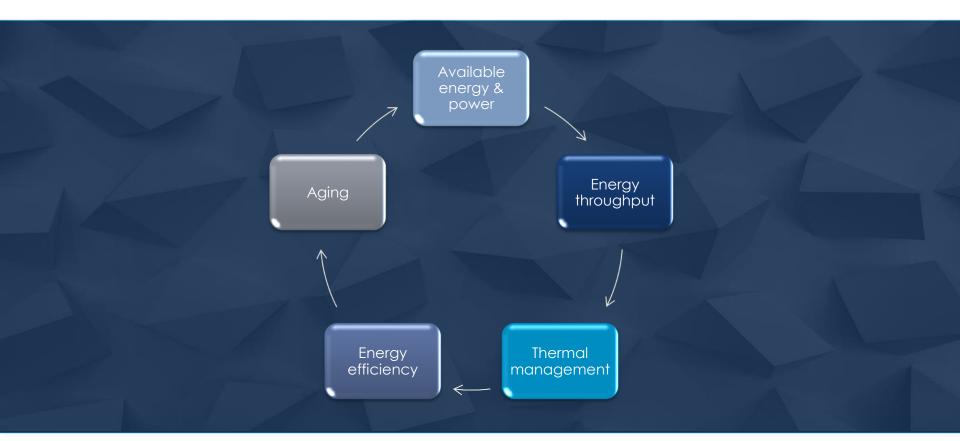
1. Secure ESS ability to generate revenue

Benefits

2. Continuous KPI monitoring, enabling early corrective measures in case of deviations

KEY POINTS FOR IMPLEMENTATION

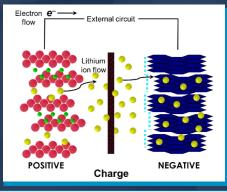
- JIM MCDOWALL, YANN LAOT


KEY POINTS FOR IMPLEMENTATION

1- A REPLICABLE BUT FLEXIBLE PRODUCT

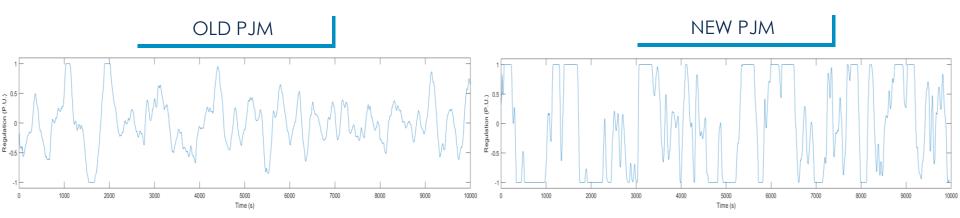
- JIM MCDOWALL

Addressing flexibility

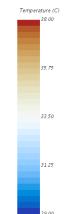

CALENDAR AGING

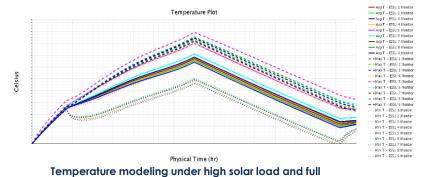
- Driven by thermodynamic stability
- Dependent on:

CYCLING AGING

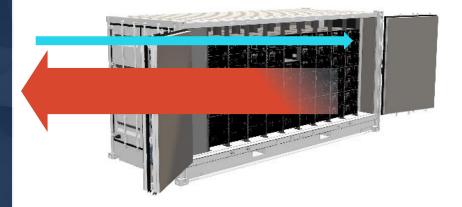

- Driven by reaction kinetics
- Dependent on:
 - Number and depth of cycles
 - Charge rate (continuous)
 - Charge duration (pulses)

Energy throughput





Thermal management



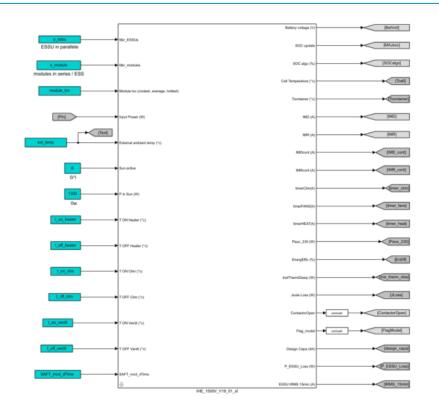
charge/discharge cycle

Energy efficiency

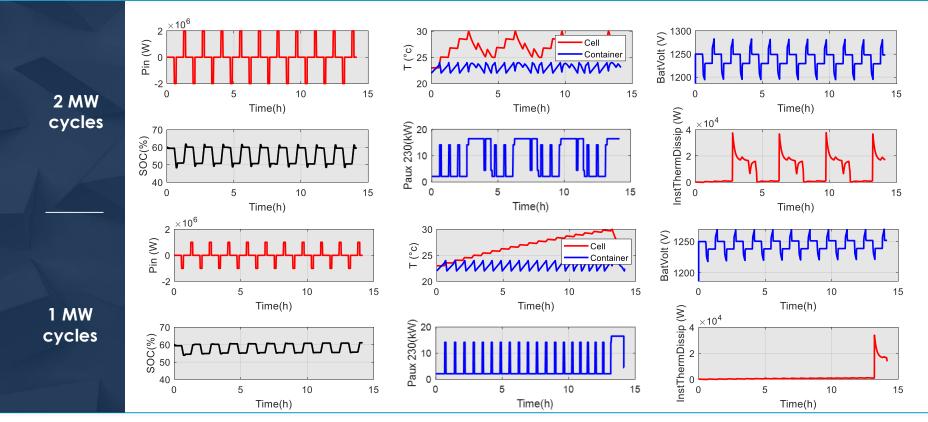
- Battery energy efficiency
- Energy for cooling and heating
 - HVAC efficiency
 - Fan management
 - Set points
- Auxiliary consumption

Available Power & Energy

- Constant power required in discharge and charge?
- 100% SOC can be reached at reduced power
- Changes from BOL to EOL must be considered
- Power may be limited by nonchemistry components
 - Cables


•

- Connectors
- Protective devices


Advanced modeling enables flexibility

- Saft has developed and refined advanced modeling capability in Matlab-Simulink
- Modeling electrical and thermal characteristics of containerized systems
 - Modeling at any stage of life
 - Aging analysis
 - Auxiliary power consumption

Exploring flexibility solutions

31 | How to keep your ESS flexible in times of changing market conditions ?

saft

KEY POINTS FOR IMPLEMENTATION

AMET

+3.0293

2- AN OPTIMIZED APPROACH TO AUGMENTATION

SIT

-0.8965

LOREM

+0.7844

IPSUM

-4.5489

DOLOR

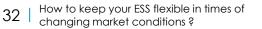
+6.2035

Q

- YANN LAOT

+3.110

ADIPISCING

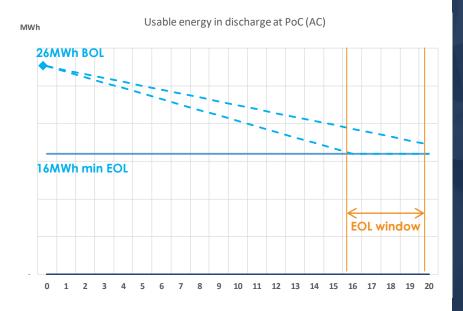

-8.3748

CONSECT

25.820

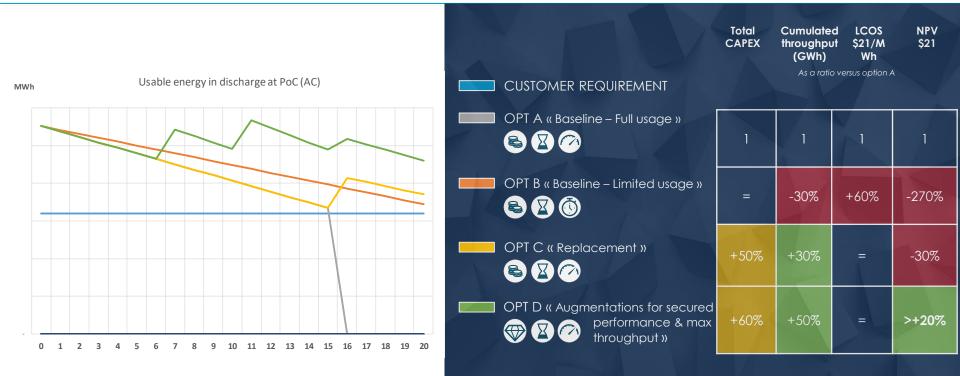
-9.2904

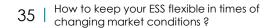
+Add



Energy storage value creation driven by four main drivers affecting sizing

"No ideal solution", a concrete example of a Saft customer PV + storage power plant




Grid-connected energy storage , collocated with a PV plant >45MWp

- Multiple stacked applications
- Uncertain PPA duration
- Technical requirements

"No ideal solution", augmentation a key choice among multiple options

KEY POINTS FOR IMPLEMENTATION

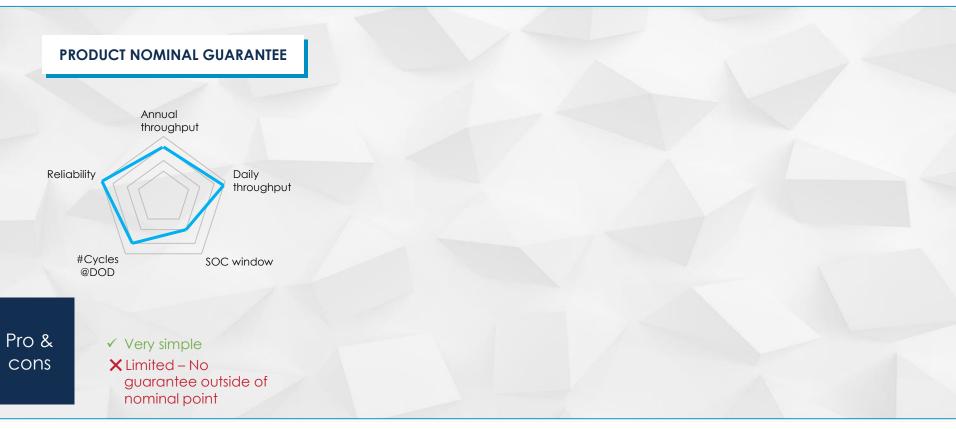
3- FLEXIBLE GUARANTEES

- YANN LAOT

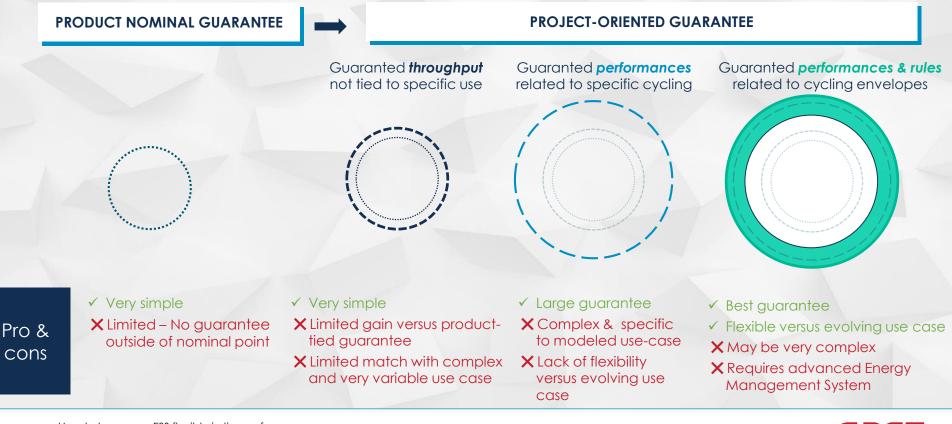
Warranty versus Performance guarantees, two different but complementary notions

(Extended) Warranty

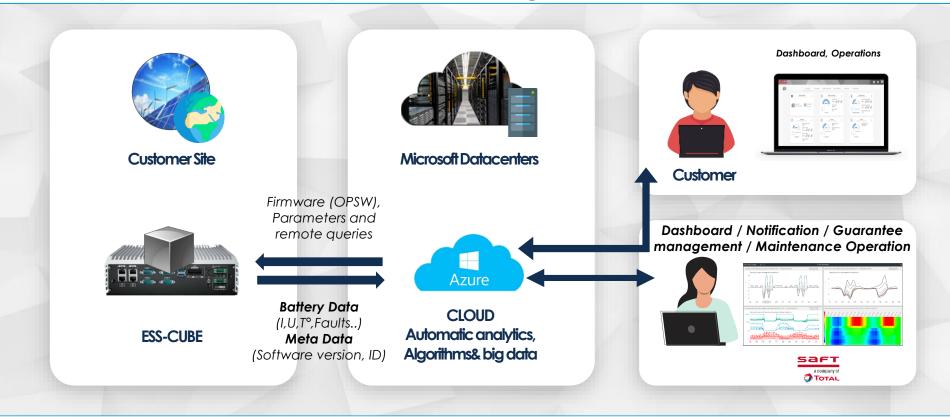
- Covers defects or failures: "free from material defects in materials and workmanship"
- Applies to "materials" components, subsystem or system (hardware or software)


Performance Guarantees

- Ensure a minimum performance and/or its evolution performance overtime
- Applies more often to "immaterial" metrics of a product or of a service



Performance guarantees, a range of possible choices to arbitrate between coverage and complexity



Performance guarantees, a range of possible choices to arbitrate between coverage and complexity

Saft remote monitoring & cloud CUBE solution, the key enabler to support all kind of performance guarantees

Η 0 0 TA

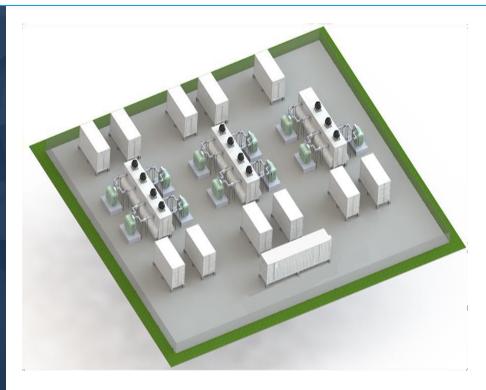
DESIGN OPTIONS

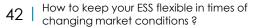
N

MICHAEL LIPPERT

1 0 1 1 0

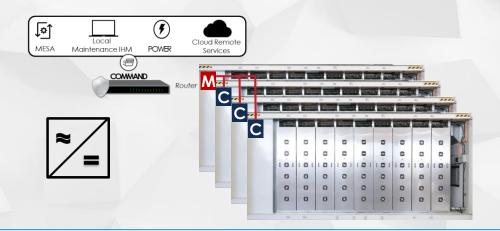
How to keep your ESS flexible in times of 41 changing market conditions?




Case Study: Dunkirk I

Battery storage solution to supply the French grid operator with FCR services

- Solution for Dunkirk
 - 25 MW 25 MWh
 - 11 Intensium Max High Energy
 - 3 PCS
 - 11 LV/MV transformers
 - Perennial solution to be used for future projects


A building block for flexible usages

DIFFERENT APPLICATIONS CALL FOR...

✓ Flexible architectures

- different / evolving power and energy
- different system sizes

- Intensium Max 20 High Energy
 - 2.5 MWh
 - Up to 2.5 MW

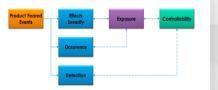
A building block for flexible usages

- Intensium Max 20 High Energy
 - 2.5 MWh
 - Up to 2.5 MW

DIFFERENT APPLICATIONS CALL FOR...

\checkmark Flexible architectures

- different / evolving power and energy
- different system sizes
- ✓ Different voltages
- ✓ Different environments



 A consistent safety concept adaptable to local conditions

... a consistent safety concept adaptable to local conditions

System approach to identify, minimize and mitigate product hazards

Risk analysis at system level

- Capture electrical (U, I) electrochemical & thermal hazards, and combinations
- Effects and occurrence

Design HW and SW safety barriers

- Detect
- Eliminiate
- Mitigate
- Control effects

Extensive component and system abuse testing

- Validate effectiveness of safety barriers
- International certifications EC, UL, ...

... replicable solutions

20-foot container concept, factory assembled and tested

One product – 3 sites

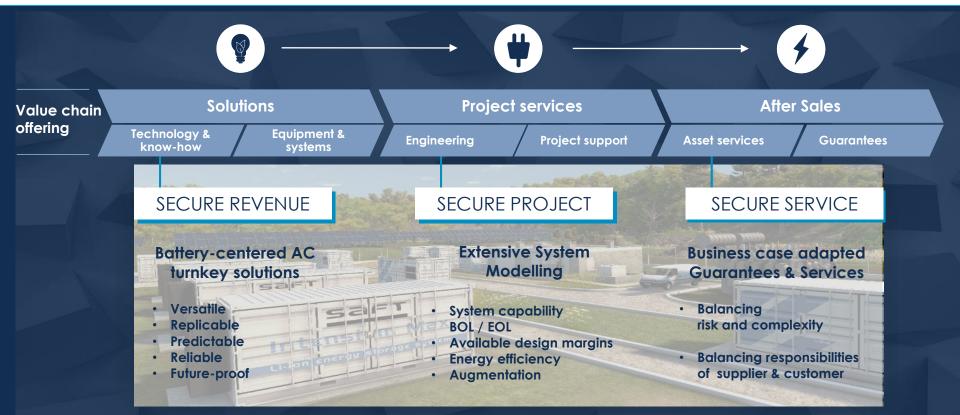
- One single design available from 3 industrial Saft sites worldwide
- Locally optimized supply chain and services

Assembled and tested in factory environment

- Specialized Saft
 personnel
- Test benches for
- high power / high voltage
- Full functional testing

Transportation and quick installation anywhere

- Weight < 30t
- No local assembly
- No climate constraints



Saft turnkey energy storage solutions Our building blocks for a complete lifecycle solution

Saft turnkey energy storage solutions Our value proposition

saft

Which topics would you be interested in for future webinars?

Saft's common purpose

We energize the world. On land, at sea, in the air and in space.

in

Stay tuned!

contact.webinar@saftbatteries.com

How to keep your ESS flexible in times of

changing market conditions?

50