
Low-Code and Agile 2:
Like Peanut Butter and Jelly
Accelerating software development with
low-code and advanced Agile.

appian.com | 2

Imagine if a new product feature could be released right away,
just days after you’d envisioned it.

For organizations offering digital products accessed over
the internet, this dream is often far from reality because of
the complex infrastructure requirements for taking working
code to an available product. For example, deploying to
a cloud such as AWS requires defining a network cluster,
load balancers, and multiple “availability zones,” often for
multiple geographic regions. A single app with one service
might have several dozen or more unique requirements,
which could require the creation of a hundred infrastructure
components. Now multiply this by the number of apps needed,
exponentially increasing the level of complexity.

This is where low-code can help. The best enterprise low-code
tools pre-define an application’s infrastructure architecture,
so you only have to deal with the workflows, data, and
interfaces—the rest takes care of itself, no coding required.
Low-code simplifies and speeds app development, letting
you finish and deploy new features in just days. And low-code
tools still allow you to use high-code if you need it—one does
not preclude the other.

Low-code is a game-changer for business agility and
complements enterprise-friendly Agile methods, such as Agile 2.
Agile 2 provides a more nuanced, well rounded, and mature set
of behavioral norms for agility at large organizations.

With an Agile approach using Scrum teams and programming
languages, it commonly takes weeks, and sometimes months,
to go from feature definition to feature implementation. But

using low-code tools, you can go from prototype to a working
version in days, and then to a complete production-ready
version within a similar timeframe. This is because all of the
underlying deployment complexity is taken care of by the low-
code platform. This nicely supports Agile 2’s preference for
strongly linking product design and development.

With low-code, teams can be truly agile: development teams
can collaborate with product designers and try out features
in days. They can release those features and tweak them
based on immediate usage telemetry. Equally important,
the right enterprise low-code platform gives development
teams the agility to evolve applications in order to keep pace
with evolutions in business, technology, and strategy. To
take advantage of this, one has to think beyond legacy Agile
approaches that do not include product design and that
embed a multi-week turnaround cycle.

Low-Code and Agile 2:
Like Peanut Butter and Jelly
Accelerating software development with low-code and advanced Agile.

1. Yahoo!Finance, “JetBlue founder’s new airline is a ‘tech company that happens to fly airplanes,’” accessed September 1, 2021.

http://appian.com
https://agile2.net

appian.com | 3

Is every company a software company?

What about companies that do not create digital products for
the internet?

Most large organizations today conduct their business through
a technology platform. That’s why Jetblue and Breeze Airline’s
founder, David Neeleman, said that Breeze is “a tech company
that happens to fly airplanes,”1 and Capital One CEO Richard
Fairbank called the company “a technology company that
does banking.”2

Even small businesses increasingly rely on technology,
whether it be a restaurant relying on DoorDash for deliveries
or a niche retailer getting business through Shopify.

This unavoidable reliance on technology platforms presents
a dilemma, because these platforms often require quite a bit
of technical expertise for customization—something that not
all organizations have. Large organizations with complex
products and services that operate together almost always
need to create custom digital processes. The standard
processes provided by Software-As-a-Service platforms
are not customizable enough, and the specific way that a
company’s processes work is often an important differentiator.

Large banks, for example, typically have hundreds of
software development teams and very complex and highly
integrated digital services that handle all the different kinds of
transactions users perform on a variety of devices. They also
have digital integrations to connect with partners like retailers
who co-brand their credit instruments and provide other credit
and payment services through the banks.

Is this technical complexity sustainable? Can all these
organizations operate effectively as tech companies? An
opinion piece in USA Today says no, because of difficulty
securing sensitive data.3

“The sad truth is that many modern
banks don’t much care about people’s
private information. The same apparently
goes for companies that work with banks.
On the same day the Capital One breach
was reported, credit rating agency
Equifax agreed to pay $700 million to
settle a 2017 data breach.”3

But regardless of industry, adopting technology is no longer
a choice: rather, it is a question of survival. Tesla and Amazon
have shown that if a company vertically develops its own
technologies, it can outcompete others in the market. Both
Tesla and Amazon are highly successful business technology
platform companies. And “business technology platform”
doesn’t refer to the underlying infrastructure in this case: it
refers to the functions that build or deliver value to customers.

To stay competitive, large companies must invest in their own
business technology platform, which usually means investing
in software development. They can create that platform using
low-code or high-code, or a combination of both.

The question then is how to optimize that investment so that
effort goes where it matters. This is particularly important for
any product that contains software, because evidence shows
that software development is difficult to do well, and there are
just not enough skilled developers around.

An alternative is to look at ways to simplify software
systems to reduce the number of resources that are required
to develop and maintain them and the complexity of most
components. This allows developers to focus on the most
important differentiators for the company or the things that
are mission critical.

2. The Motley Fool, “Capital One Financial Corp (COF) Q1 2019 Earnings Call Transcript,” accessed September 1, 2021.
3. USA Today, “Capital One data breach shows why it shouldn’t be a tech company that does banking,” accessed September 1, 2021.

http://appian.com
https://www.usatoday.com/story/opinion/2019/08/07/capital-one-data-breach-shows-tech-company-banks-editorials-debates/1878286001/
https://hackernoon.com/why-is-software-development-so-hard-i43t32lh

appian.com | 4

Enter low-code.

A particularly powerful way to simplify software
development and maintenance is to use low-code tools. Low-
code platforms enable developers to create a full-featured
microservice or web application in very little time. Low-code
ushers in the era of quickly crafted software to run almost
every aspect of your business.

Low-code technology is visual—you express your intent by
drawing and configuring instead of coding. It is declarative
instead of imperative; that is, the process is about saying
what you want to happen rather than coding all the details
to make it happen. This allows business and technical
people to communicate and collaborate much more
effectively, since they can build things together and don’t
have to waste time in meetings translating back and forth.
Low-code allows applications to be built 10 to 20 times
faster than traditional development.4

It is important to note that not all low-code platforms
are the same. They run the gamut from super simple for
departmental use to enterprise-grade low-code. Enterprise
low-code systems are highly secure, reliable, and scalable.
Developers can focus on the features they are trying to
create instead of all of the nuts and bolts, which are already
built into low-code platforms. This provides developers more
time to focus on innovation, while the low-code platform
takes care of mechanics and upgrades, drastically reducing
the cost of maintenance.

But does low-code work for everything? What are its
“sweet spots”?

Low-code key characteristics.

Low-code tools empower product developers in many ways.
Of course, there are vast differences between the various low-
code tools that are available, but enterprise-grade low-code
tools should offer some or all of the following benefits:

• Give developers choice where it matters; remove
complexity where it is not needed: Allow developers
to focus their efforts on building important functionality
without being paralyzed by a million different ways of
doing the same thing.

• Improved developer experience: An interface that
removes technical complexity from the design process,
enabling rapid prototyping.

• Workflow automation: Uses digital workers and
technologies to execute a workflow with as little human
intervention as possible. Workflow automation aims to
improve efficiency and increase productivity using robotic
process automation, artificial intelligence, business process
management, decision rules, and case management.

• Harness data: Access, integrate, and leverage data
across the organization from any source, including
legacy systems, without expensive migration or requiring
complex database programming. Should include
integration and connectors to enterprise systems such as
Salesforce, AWS, etc.

• Enterprise-grade security: The platform needs to be
certified so you know it’s hardened, then the application
tools need to present the security of data and interfaces in
a point-and-click way that business users can understand
and collaborate on.

• Extensibility through integration: Enable applications
to link across legacy enterprise systems and with third-
party systems. This will allow the platform to support
future growth.

• Provide data governance and compliance: Provide tools
to enable organizations to monitor, audit, and control
their data.

• Mobile ready: Applications should work across all
platforms and devices, on and offline, with no additional
development needed.

• Integrated DevOps: Fast and fluid continuous
integration/continuous deployment, which supports
development team collaboration, ease of testing, and
real-time performance monitoring.

These benefits are compelling. You might wonder what must
change in order to use low-code tools. For example, how does
this impact your Agile teams?

2. The Motley Fool, “Capital One Financial Corp (COF) Q1 2019 Earnings Call Transcript,” accessed September 1, 2021.
3. USA Today, “Capital One data breach shows why it shouldn’t be a tech company that does banking,” accessed September 1, 2021. 4. Forrester, “The Total Economic Impact of Appian,” June 2021: https://appian.com/resources/resource-center/analyst-reports/forrester-total-economic-impact-appian.html

http://appian.com
https://appian.com/low-code-basics.html

appian.com | 5

What about Agile?

Most organizations that build software today use an Agile
approach. The goal of Agile methods is to create and release
new product features rapidly, enabling an organization to
adjust course quickly if a feature is not well received or if new
opportunities arise. In other words, to have business agility
with respect to the digital business platform.

One problem is that today’s software systems are extremely
complex. For example, large banks might have thousands
of microservices, each an independent program, and all
interconnected and serving customers through a wide range
of applications or inter-business connection points. These
microservices provide great scalability, enabling online
businesses to reach tens of millions of customers or more with
high reliability and availability, allowing online business to be
essentially nonstop, without maintenance outages.

That scalability and reliability comes at the cost of increased
complexity, however, and increased complexity requires more
development time. The time required to redesign and change
something in development varies by increasing degree with its
complexity. More time required to make a change means less
agility. Today it is common for teams to envision a new feature
in days, but it might take weeks for the feature to be developed
using programming languages. And it might take even longer—
perhaps months—to integrate those changes into the product
suite, delaying when the feature can be released to users.

Another problem is that Agile does not always work in complex,
real-world situations. It turns out that there is an “old” Agile and a
“new” Agile. In the words of Jeff Patton, author of the best selling
Agile book User Story Mapping, “When people say Agile today,
they mean something different today than they did in 2001. . . it’s
come to mean something else.”

Indeed, many Agile authors of the past ten years have been
saying very different things from what the first crop of Agile
authors were saying. The old Agile by and large did not
answer questions such as how Agile ideas could work in a
large and complex organization. It prescribed one-size-fits-all
approaches, as well.

Today’s more nuanced and enterprise-ready version of Agile
is well described by Agile 2: a sophisticated set of behavioral
norms that are needed for an organization to have agility.

New Agile thinking, as described by Agile 2, brings
back nuance.

The original Agile ideas were very simplistic and extreme, yet
extremes usually do not work well in a complex organization:
what tends to work well is an intelligent blend of approaches.
For example, early Agile had a blanket insistence on self-
organizing teams. In contrast, Agile 2 treats self-organizing
teams as a worthy goal, but introduces well-established
leadership models, including transformational leadership.
Effective leadership is needed to ensure that teams coordinate
their work, and leadership is also needed to help teams
progress toward being more self-organizing.

Early Agile approaches also overlooked many essential things.
For example, Agile frameworks such as Scrum and eXtreme
Programming were (and still are) light on product design.
As a result, many in the product design community feel that
the Agile movement displaced product design.5 More recent
interpretations of Agile, notably Agile 2,6 re-emphasize the
importance of product design and encourage organizations
to empower product designers and product developers to co-
create in an ongoing manner. For example, Agile 2 suggests
considering a “dual-track” approach whereby designers and
developers switch back and forth between collaborating and
working independently.

5. https://www.youtube.com/watch?v=q2dRk3hokEw
6. https://agile2.net/

Learn about Agile 2.

• https://futurecio.tech/podchats-for-futurecio-
how-agile-2-re-aligns-agile-for-the-new-
normal/

• https://www.agile2academy.com/about-
agile-2

• https://agile2.net/more-resources/agile-2-in-
a-nutshell/

• https://vimeo.com/625542974

http://appian.com
https://dzone.com/articles/old-versus-new-agile
https://dzone.com/articles/old-versus-new-agile
https://produxlabs.com/product-thinking-blog/episode-15-jeff-patton
https://agile2.net
https://futurecio.tech/podchats-for-futurecio-how-agile-2-re-aligns-agile-for-the-new-normal/
https://futurecio.tech/podchats-for-futurecio-how-agile-2-re-aligns-agile-for-the-new-normal/
https://futurecio.tech/podchats-for-futurecio-how-agile-2-re-aligns-agile-for-the-new-normal/
https://www.agile2academy.com/about-agile-2
https://www.agile2academy.com/about-agile-2
https://agile2.net/more-resources/agile-2-in-a-nutshell/
https://agile2.net/more-resources/agile-2-in-a-nutshell/
https://vimeo.com/625542974

appian.com | 6

5. https://www.youtube.com/watch?v=q2dRk3hokEw
6. https://agile2.net/

Early Agile also displaced the role of the data architect. As a
result, Agile teams often create software that sends data to
a data lake, but that data is unusable by machine learning
teams because it is not sufficiently defined or modeled. Agile 2
brings data back into the scope of Agile processes so you can
make use of your data lake.

Shifting to Agile 2 is not a wholesale replacement of Agile. It is
a matter of adding nuance and new ideas to the original Agile
approaches. For example, Agile 2 tells us to consider having
product design teams and link them to our Scrum or Kanban
teams, if we have those. Yet, Agile 2 is not prescriptive: it is a
set of ideas, not a set of rules, roles, or workflows. You can add
Agile 2 ideas incrementally, when they are applicable to your
situation. Also, Agile 2 is compatible with Agile

Leadership: make it part of
organization design.

Senior leadership ensures that the right
kinds of leadership are in place when and
where they are needed, as issues come
and go; leadership style needs to be part
of ongoing organization design.

Freedom of choice.
Individuals have choices about

how they do their own work, teams have
choices about how they work together,
and product leaders have choices about
how to build and deliver their product.

Early Agilists championed certain
methods, such as Extreme Programming
and sitting in a team room. Agile 2
promotes allowing people to decide—
within reason—how they work best. This
flexibility promotes a feeling of autonomy,
which is important for motivation and
also supports neurodiversity, as different
people work best in different ways.

The right balance of
collaboration and focus.

Both collaboration and the ability to focus
without distraction are important. Ensure
that people have opportunities for
uninterrupted, focused work in addition to
collaboration with their teammates.

Make data usable.
The Agile movement had the

unintended consequence of removing
data architecture from the product
development cycle. The result has been
that data lakes are often unusable for
business intelligence and machine
learning. Agile 2 brings data back, in an
agile manner, and makes data a first-
class stakeholder.

End-to-end focus.
Teams need to consider the

entire product rather than just their own
work. A product feature is not complete
until it has been integration tested.

Integrate product design and
product development.

Agile frameworks like XP and Scrum
recommend a 2–4 week period during
which development teams focus on a
fixed set of features to implement. Agile 2
instead advocates having an ongoing
collaboration between product design
and development, using techniques such
as “dual-track design.”

In addition, Agile frameworks such as
Scrum and XP treat product development
as a “feature mill” driven by a single
product owner, and do not even mention
the important activity of product design.
Agile 2 elevates product design to an
essential activity.

How low-code supports Agile 2.

• Low-code approaches tend to reduce team
size, relieving some of the pressure for
uniformity in how everyone works.

• More advanced low-code tools offer DevOps
collaboration features, which make it easy for
dispersed development teams to effectively
work together.

• Provide enterprise guidelines that recommend
using low-code where it makes sense, but do
not mandate low-code for everything. Discuss
which cases low-code is best for.

Some key characteristics of Agile 2.

http://appian.com

appian.com | 7

process frameworks such as SAFe and DA—Agile 2 provides
behavioral norms and approaches that enable things to
work so much better across the board, no matter what your
baseline processes are.

Low-code brings business, product design, and
development together.

Agile 2 recommends that we tightly integrate product design
and development, and suggests using dual-track teams to
achieve that. But with low-code one can go further: low-code
effectively matches the end-to-end development turnaround
time to the time it takes to envision a new feature. That means
that designers and developers can have a very collaborative
envision and development workflow.

The visual design aspect of low-code also enables more robust
collaboration between designers and developers, thereby
speeding up the overall process of going from design to
development. The same is true of business stakeholders: they
can participate along with product designers and developers.

Since low-code takes care of much of the technical complexity
of software development, programmers are working in a more
creative way, and they need less “heads down” time focusing
on details. That means that they have less need for quiet and
isolation—working in an open and collaborative setting is
more feasible.

Low-code helps save your data lake.

Agile 2 tells us to model data in an agile and ongoing manner.
Low-code provides a powerful approach for doing that.
Some low-code tools enable developers to define data in an
declarative manner, which creates built-in documentation that
is critical to leveraging historical data for machine learning
and business intelligence.

A few low-code tools use a data modeling approach in which
data object relationships are explicit. This approach is highly
resilient, letting you make changes later, and also optimizes
performance. Thus, instead of ending up with a jumbled pile
of data objects in a data lake, one can trace the relationships
between data objects and their meanings are documented in
the low-code tools.

Some low-code tools also have built-in connectors to many
kinds of data sources (including Salesforce), ensuring that all
your enterprise data can be managed together.

Learn about low-code.

• Low-Code Guide

• Low-Code Buyers Guide

• https://appian.com

Case study: A bank uses low-code and advanced
Agile practices to deliver rapid innovation.

Acme Bank is a pseudonym for a North American banking and
financial services firm with +500 retail locations and between
5,000 to 10,000 employees.

According to their SVP of IT Solution Delivery, “Our
organization deploys new functionality on either a monthly
or sometimes weekly basis across multiple business lines.
With low-code, small teams using Agile practices can rapidly
deliver incremental improvements.”

http://appian.com
https://appian.com/resources/resource-center/demos-ebooks-guides/low-code-guide.html
https://appian.com/resources/resource-center/demos-ebooks-guides/low-code-automation-buyers-guide.html
https://appian.com

appian.com | 8

“We would rather fail in a small
implementation that could be easily
fixed in a few days than fail in a large
one, which could have a significant
impact on the business.”
— A banking SVP of IT Solution Delivery

Acme Bank attributes delivery success to three key attributes,
all enabled by the use of a low-code platform and advanced
agile practices:

Attribute #1: Agile teams.
“Our delivery teams are structured like a special forces team:
they’re small (3–4 people, on average), self-contained, and
cross-trained. They are built for speed, but they are also non-
hierarchical: the most junior member of the team will review
the coding of the most senior. This allows the team to learn,
and deploy quickly.”

Attribute #2: An end-to-end perspective on capabilities.
“Our delivery teams are closely partnered with product
owners, who report within business groups. They are
responsible for understanding not just the existing systems
supporting a business group, but the business capabilities
required for that business group to deliver on its strategy. This
context helps the teams proactively identify new capabilities
needed. But also, because their teams understand the
connection between systems and the underlying business
capabilities they support, they are able to rapidly identify
interdependencies between systems. This helps them quickly
understand the full scope of new use cases and clarify user
stories . . . giving them more time to develop solutions.”

Attribute #3: Data first.
“We used to start a project by focusing on understanding the
desired workflow. That got us into trouble as later we would
realize we missed a key reporting requirement or integration.
Now we have a ‘data first’ approach: we start with
understanding key data requirements necessary to support
the desired business outcome.”

Impact.

Acme’s SVP of IT Solution Delivery continued, “The
productivity of our low-code delivery teams came into sharp
focus during the early stages of the pandemic, when both
our low-code delivery teams and traditional delivery teams
worked on similar projects under significant time pressure.
In the end, our low-code delivery teams were able to deliver
twice the functionality with half the total bodies.”

Summary.

Low-code makes Agile more effective and strongly enables
evolutions in Agile, such as Agile 2’s emphasis on product
design and including developers in product feature definition.

Using low-code strengthens collaboration between business
and IT, which in turn accelerates innovation by shortening
the design and implementation cycle, allowing for rapid
iteration. This inevitably improves the product and enhances
customer experience.

Because low-code simplifies the task of building applications,
it makes technology more accessible to a broad range of
organizations. This enables you to focus your most skilled
technical resources on the activities that add the most value.

Low-code platforms are also a productivity booster for
developers. And—coupled with Agile 2 approaches to data—
low-code enhances data management, making data more
accessible for business intelligence, machine learning, and
other purposes.

Crucially, low-code platforms are now used to build complex
business-critical applications—they are not just for simple
things. That means that you can apply low-code approaches
broadly, and not just for special cases.

Agile 2 approaches are much more “enterprise-ready” than
the overly simplistic Agile ideas that predominated in the
early days of the Agile movement. Low-code can supercharge
agility by making everything simpler and faster and with more
reliability built-in.

And that’s why low-code and Agile 2 go together—like peanut
butter and jelly.

http://appian.com

appian.com | 9

Cliff Berg
Cliff is Managing Partner of Agile 2
Academy (agile2academy.com). He has
helped with more than ten Agile or DevOps
transformations. At Agile 2 Academy he

has been applying organizational culture models to identify
and remove cultural obstacles to the use of Agile and DevOps
methods. Cliff assembled the team of 15 who founded Agile 2
(agile2.net), and is a co-author of Agile 2: The Next Iteration of
Agile (Wiley, 2021). Other books of his include High-Assurance
Design (2006), and Sun Microsystems’ first book on “enterprise
scale” Java (1998). Previously, Cliff was co-founder and CTO of
a software startup that grew to 200 people. Cliff has degrees in
operations research, nuclear engineering, and physics from
Cornell University. He has been a nuclear engineer, an electrical
engineer, written compilers, and created a variety of tools for
software engineering.

Suvajit Gupta
Suvajit Gupta is the Executive Vice
President of Engineering at Appian, where
he oversees product management,
development, and quality assurance of the

Appian product. Suvajit has more than three decades of
software development experience, and was Vice President of
Development at Eloqua — a marketing SaaS provider that
was acquired by Oracle. He received his master’s degree in
Computer and Systems Engineering from Rensselaer
Polytechnic Institute and an undergraduate in Electronics and
Communications Engineering from IIT Kharagpur in India.

Learn more about Appian at appian.com
Learn more about Agile 2 at agile2.net

Authors.

http://appian.com
http://www.appian.com
http://www.appian.com

appian.com

Appian helps organizations build
apps and workflows rapidly, with
a low-code platform. Combining
people, technologies, and data in a
single workflow, Appian can help
companies maximize their resources
and improve business results. Many
of the world’s largest organizations
use Appian applications to improve
customer experience, achieve
operational excellence, and simplify
global risk management and
compliance. For more information,
visit appian.com.

WP-779183065-v6

http://appian.com
http://www.appian.com
http://appian.com

