WEBINAR

Understanding bifacial's true potential: technology innovation and technical bankability of bifacial PV projects

MONDAY, 7TH OCTOBER 2019

Bifacial PV Technology: Ready for Mass Deployment

PV Magazine Webinar on Bifacial PV

Dr. Lars Podlowski
VP Global Technical Services
PI Photovoltaik-Institut Berlin AG

Overview

- History of Bifacial PV
- Bifacial PV Technologies
 - Solar Cells
 - Solar Modules
- Impact of the System Design to the Achievable Energy Gain
- Yield Prediction Softwares
- Examples of Real Installations

History of Bifacial PV

1954: the world's first solar cell design was bifacial

 late 1990ties: the world's No.1 solar cell was a bifacial cell (Siemens PowerMax)

front side

rear side

History of Bifacial PV

- 2003 2010: 1st phase of commercialization with some early commercial products (Sanyo HIT; SolarWind) and a R&D programs of serious players (Hitachi; Sunpower)
- 2011 2016: 2nd phase of commerzialization with some early bifacial power plants (PVG; Sunpreme) and first companies building specific bifacial technology platforms and production lines (MegaCell; CIE; Linyang; ..)
- Since 2017: 3rd phase of commercialization; started with some large fields in correlation with Chinese "FrontRunner" program. Now bifacial PV is one of the most attractive options for reducing LCOE

 Outlook: ITRPV says the majority of solar modules will be bifacial in 10 years

Table 2.1 Bifacial solar cells and their main parameters

	Cell concept	Bifaciality factor (on cell level)	Si base material		Contacts	(Front) Efficiency potential
2.5.1	Heterojunction	>92%	n mono	a-Si:H p- and n-type doped	TCO/Ag printed TCO/Cu	22%–25%
2.5.2	n-PERT	>90%	n mono	Boron and Phos- phorous diffusion	Ag and Ag/Al printed	21%–22%
2.5.3	p-PERT	>90%	p mono	Phosphorous and Boron diffusion	Ag and Ag/Al printed	21%–22%
2.5.4	PERC+	>80%	p-mono	Phosphorous diffu- sion and local Al BSF	Ag and Al printed	21%–22%
2.5.5	IBC	>70%	n-mono	Boron and Phos- phorous diffusion	Ag and Ag/Al printed	22%–23%

Source: SOLARWORLD White Paper:

"Calculating the Additional Energy Yield of Bifacial Modules"

p-PERC

p-PERC manufacturing process can easily be modified for a bifacial solar cell version

2 n-PERT

n-PERT is the technology-of-choice for many bifacial solar cells because of better bifaciality

- HJT has the highest efficiency and best bifacial coefficient
- Very different manufacturing process requires higher investment in equipment

Source for graphics: MeyerBurger

Standard module technology is double glass (p-PERC based)

Advanced module technology designs

White patterned glass improves front side STC power

Half-cut bifacial back-contact solar cells

Bifacial shingled solar cells

Substitution of rear glass by a clear backsheet

JinkoSolar Swan Bifacial Module

- Today glass-glass is still the predominant technology for bifacial PV modules
- Glass-backsheet is becoming more relevant because it has the advantage of lower weight plus some former disadvantages got resolved
- Our position: there is not a clear better or worse module concept

Bifacial PV: simple concept but many additional factors for energy gain

- Source: SOLARWORLD White Paper:
- "Calculating the Additional Energy Yield of Bifacial Modules"

- Albedo (which is not constant over the day and also seasonally)
- Level above ground
- Row spacing
- Uniformity of backside irradiance
- Tilt angle
- Light spectrum onto rear side
- Backside IAM
- Obstructions from racking structure
- Modules portrait or landscape
- Tracking algorithm

Influence of ground albedo

surface	albedo [%]
water	8
dry dark soil	13
grass	17-28
dry sand	35
dune sand	37
old snow	40-70
reflective roof coatings	80-90
fresh snow	75-95

Source: R. Kopeczek (ISC Konstanz): Presentation at the "HERCULES" workshop 2018

Influence of level above ground

Source: SOLARWORLD White Paper:

"Calculating the Additional Energy Yield of Bifacial Modules"

- Larger row spacing is beneficial for bifacial gain
- Important factor for overall project optimization (technical and financial aspect)

Source: I. Shoukry et al.: 6th International Conference on Silicon Photovoltaics, SiliconPV 2016

Yield Prediction Softwares

"Well accepted methodology for energy modeling is the biggest hurdle with bifacial systems."

Jenya Meydbray, Cypress Creek Renewables

(now with PVEL)

Source: presentation on the workshop on bifacial PV 2018

Yield prediction softwares

1. PVSYST

has a bifacial option since 2017

2. SAM

Free software developed by NREL

3. MOBIDIG

Special software for bifacial PV from ISC
 Konstanz; user version under development

4. BIGEYE

Software from ECN TCO

5. SolarFarmer

By DNV

6. Name =?

Software by IMEC and EnergyVille (Belgium)

7. PlantPredict

Software tool from First Solar

... plus several others

Yield prediction softwares

A lot of activities to verify accuracy of software tools

PVEL, supported by DoE grant

Deploy bifacial systems with monofacial reference in the field to validate energy modeling practices

- Bifacial Test Stations: single module IV curves, 2-portrait single axis trackers
- 4 manufacturers side by side with 1500V Strings on 2 albedos
- Impact of spectral albedo and temporal change in albedo

Partner with Energy Modeling community for field validation on reduced order models

- PVSyst, TNO, SAM, Solar Farmer, Plant Predict

2

Source: workshop on bifacial PV 2019

Yield prediction softwares

First publications about comparison of test sites with simulation tools

Conclusions from the comparison [1]

- The three simulation tools
 -) give similar results
 - are in agreement with the experiment
- bifacial yield modeling is reaching a stage of maturity.

Source: A. Burgers (workshop on bifacial PV 2019)

System data:

Capacity: 38 MWp DC

Installation: HSAT

Location: Arizona

Source: www.soltec.com

System data:

Capacity: 15 MWp DC

Installation: fixt-tilt

Location: New Jersey

Source: www.sunpreme.com

System data:

Capacity: 6 MWp DC

Installation: fixt-tilt agro-PV

Location: Jiangsu (China)

Source: own photo

System data:

Capacity: 1 MWp DC

Installation: vertical east-

west agro-PV

Location: Germany

Source: www.next2sun.de

System data:

Capacity: 3 MWp DC

Installation: carport

Location: Qidong (China)

Source: own photo

System data:

Capacity: 30 MWp DC

Installation: rooftop

Source: LINYANG company brochure Location: China

	Mono-facial	Bifacial
Fixed-tilt (rooftop)	100% (ref.)	105 – 115%
Fixed-tilt (ground)	100% (ref.)	107 – 130%
HSAT	110 – 122%	117 – 145%

- With no system design changes you can simply achieve 5-7% more energy.
- More than 10% energy is achievable for almost every system but it requires design modifications (ground albedo; row spacing; higher inclination; ...)

Summary

- 1. Bifacial PV is not a new thing it is just new to many people in the PV industry
- 2. There are two drivers of bifacial PV becoming mainstream
- p-PERC solar cells can easily be made bifacial
- Cost reduction of n-type wafers
- 3. Bifacial PV system design has to consider many more parameters and variables than conventional systems
- Can be combined with HSAT

- 4. Yield prediction software tools for bifacial systems have significantly improved
- PVSYST is known to finance partners
- Results can be verified with several other tools from institutes (SAM; MOBIDIG; ...)
- 5. Bifacial PV offers a large potential for lower LCOE with very limited risk
- Requires thoughtful system design

Recommendations:

- Free download of white paper on bifacial PV at www.pi-berlin.com
- All publications from every "Workshop on Bifacial PV" are available for free download at www.bifipv-workshop.com

Your independent solar advisors!

Contact us:

PI Berlin Dr. Lars Podlowski podlowski@pi-berlin.com www.pi-berlin.com

DNV-GL

AMSTERDAM WORKSHOP

Bankability improvement for bifacial technology

The other side of the coin

7 Oct 2019

- 1 Introduction
- 2 Design variables
- Testing and certification
- 4 Bankability and modeling
- 5 Main mitigations
- 6 Bifacial main challenges
- 7 Conclusions / Questions

Introduction

- For Lenders, bifacial technology is considered as a "new technology"
- Lender's points of attention regarding bankability study to grant the "non recourse loans" are:
 - The resource
 - The specific technological risks
 - The supplier's track record
 - Specific O&M risks
 - Additional risks

Design variables

Front- and rear-side performance to be optimized to maximize bifacial gain without an offsetting reduction in front-side performance

- Albedo: bright is better (but rare)
- **Ground clearance:** 0.5 m (NREL recommendation
- Structure:
 - Height: higher is better (but expensive)
 - Spacing: wider is better (but unpopular)
 - **Tilt angle:** Higher than what might be optimal for monofacial
- DC/AC ratio:
 - Less than 1.15 may be optimal depending on the site and design
 - Clipping

Testing & Certification

- Specific adaptation of existing standards needed : higher currents
 - because of the power contribution from the rear side requires
- Standard for bifaciality factor: IEC TS 60904-1-2.
 - Important also for labelling. To be issued by the beginning of 2019
- **Re-testing guidelines** for differences in BOM for bifacial modules
 - not available yet for bifacial modules
- Quality and reliability testing

Maximum Power point (Pmax)
300 W
Short-circuit current (Isc)
8.6 A
Open-circuit voltage (Voc)
43.2 V
Bifaciality (φ) Pmax_{BiFi100}
92% 328 W
Pmax_{BiFi200}
356W

Bankability and modeling

- The bankability of a project depends on the confidence of the energy output predictions which are generally modeled
- Validation of bifacial energy modeling has not been generally accepted in the industry yet
- IE community is actively seeking sufficient field validation data to support bankable energy forecasts

Main Mitigation Measures / Initiatives

- Mixing technologies Mono/bi
- Reducing leverage of debt
- Increased warranty levels
- Manufacturer Bankability reports
- Collaboration with manufacturers
- The importance of BOM
- Maintenance Reserve Account
- Presentations to Banks

U.S. Department of Energy awards study of bifacial PV technology, which could prove a 10% increase in energy output

Research study by DNV GL will be the most comprehensive energy yield analysis for bifacial PV modules to date

Main Challenges / Risks - PERC / Bifacial

Manufacturing Technical

- Additional steps
- New Materials
- Quality Assurance System
- New product reliability and durability
- LID / LeTID
- Long term degradation
- Weight
- Mismatching

Design

- Site Selection
- Measurements
- Supporting Structure
- Lower GCR
- Backside shading
- Overtightening bolts.Frameless

Testing

- Not fully developed
- IEC 60904-1-2
- Warranties

Modelling

- Lack of validation
- Stability and actual value of Bifaciality
- Albedos Variability

factor

Tracking System

0&M

- Limited field experience
- Higher OPEX
- Clipping, actual vs predicted

Conclusions

- Bifacial Technology is a really promising technology
- DNV GL notes that gains of even 5% may require significant attention to design and siting detail
- However, standards and technology are subject to future improvements for a better bankability

Thank you.

DNV GL Solar

stephane.lebeau@dnvgl.com +33 609 161 821

www.dnvgl.com

SAFER, SMARTER, GREENER

Short Introduction of JKS

JKS Product Portfolio 2019

Cheetah FC

- 400Wp
- Efficiency 20.17%
- 25 Year Linear
 Power Warranty

Cheetah HC

- 410Wp
- Efficiency 20.38%
- 25 Year Linear
 Power Warranty

Cheetah Dual

- 395Wp
- Efficiency 19.69%
- 30 Year Linear
 Power Warranty

Swan Bifacial DG

- 400Wp(front only)
- Efficiency 19.54%
- 30 Year Linear Power Warranty

Swan Bifacial TB

- 400Wp(front only)
- Efficiency 19.54%
- 30 Year Linear
 Power Warranty
- Lower weight

JKS Swan Bifacial Features

Over 25% less Module Weight

- JKS Swan bifacial with transparent backsheet reduces the module weight over 25% compared to bifacial dual glass
- Effectively reducing the transportation and installation costs
- Saving labor cost related to module installation by over 20% using bifacial modules with transparent backsheet

Installation System Design

Bifacial with transparent backsheet

- ✓ **Fewer** supporting structures
- ✓ Compatible with the system of monofacial modules

↓ 15% mounting construction cost

Bifacial with dual glass

- ✓ More supporting structures
- ✓ Incompatible with the system of monofacial

Modules Stronger load-bearing structure is requested

Reliability of Backsheet

PVF film in transparent backsheet shows excellent transmission and mechanical property after 360 kWh/m² UV exposure, which equals a more than 30-year usage in desert area climate.

Case Studies – Reliability of Backsheet

Amsterdam BAPV Project

California Rooftop Project

Location

Amsterdam, Netherlands

Completion Time

2000 – (18 years Service Life)

System information

Size: 6.228 kWp 51 full size panels

Module type

Bifacial with transparent backsheet

Inspection result in 2018

✓ No signs of degradation of Tedlar in the front or back✓ No yellowing

Location

Presidio National Park, Building 1016, San Francisco, CA

Completion Time

May 1996 – (23 years Service Life)

System information

Size: 1.25 kWp Projected System Output: 716,4 kWh/yr

Module type

Bifacial with transparent backsheet

Source: DuPont.

Real Energy Generation Gain

Case Study 1: White paint Fixed installation

Swan bifacial reached average **16%** bifacial gain compared with monofacial modules, and in summer energy gain was up to **20%**.

Case Study 2: Sand Fixed Mounting System

Location: Haining, Zhejiang Province

Tilt Angle:30°

Installation Height: 1.2m above from

the ground

Ground Type: Sand

Testing Date:2019.2.17~2019.5.27

- Swan bifacial with transparent backsheet
- Energy gain for bifacial modules between 10%-12.5% compared with monofacial modules

Case Study 3: Grass Fixed Mounting System

Location: Lv Liang, ShanXi Province

Tilt Angle:30°

Installation Height: 0.3m-1.2m above

from the ground

Ground Type: Grass/Soil

Testing Date:2019.1~2019.6

- Gain of bifacial modules is **9.05%** compared with monofacial modules
- Bifacial modules gain is proportionally higher in low-irradiance environments
- Energy gain reached **15.07%** in January with many overcast days

Case Study 4: Grass Tracker Mounting System

- Energy gain from Swan bifacial modules is **12.6%** compared with monofacial modules
- Grass turns yellow in autumn, leading to increasing energy gain

Case Study 5: Sand Tracker Mounting System

Location: Haining, Zhejiang Province

Tilt Angle:+/-60°

Installation Height: 1.2m above from

the ground

Ground Type: Sand

Testing Date: 2019.2.17~2019.5.27

- Total energy generation monitoring from February to May
- Energy gain from bifacial modules is **11%-12.7%** compared with monofacial modules

Business case study

Business case study

Option 1: Monofacial 400Wp modules

• **TOTEX** 72m\$

• LCOE 72m\$/2,850,000MWh = 25.3\$/MWh

Option 2: Swan 400Wp modules

- +10% energy yield
- Lower annual degradation

• **TOTEX** 75m\$

• **LCOE** 75m\$/3,157,000MWh = **23.8**\$/**MWh**

 1.5\$/MWh lower or 6% reduction of the LCOE by using the SWAN modules (compared with Cheetah modules)

 Additional benefit: with Swan modules the lifetime of the PV park increases to 30 years

Bifacial gain

Lighter

Module Installation Labor Cost

reduction
*(based on case study presented)

Thanks